
1

Virtual Memory

Chapter 8

Operating Systems

© Dr. Ayman Abdel-Hamid, OS

2

Outline
•Hardware and Control Structures

–Locality and virtual memory

–Paging

–Segmentation

–Combined Paging and Segmentation

–Protection and sharing

•Operating System Software
–Fetch policy

–Placement policy

–Replacement policy

–Resident set management

–Cleaning policy

–Load Control

© Dr. Ayman Abdel-Hamid, OS

3

Hardware and Control

Structures
• Memory references are dynamically translated

into physical addresses at run time

– A process may be swapped in and out of main

memory such that it occupies different regions

• A process may be broken up into pieces that

do not need to located contiguously in main

memory

– All pieces of a process do not need to be loaded in

main memory during execution

© Dr. Ayman Abdel-Hamid, OS

4

Execution of a Program

• Operating system brings into main
memory a few pieces of the program

• Resident set - portion of process that is
in main memory

• An interrupt (memory access fault) is
generated when an address is needed that
is not in main memory

• Operating system places the process in a
blocking state

© Dr. Ayman Abdel-Hamid, OS

5

Execution of a Program

• Piece of process that contains the logical
address is brought into main memory

– Operating system issues a disk I/O Read
request

– Another process is dispatched to run while
the disk I/O takes place

– An interrupt is issued when disk I/O
complete which causes the operating system
to place the affected process in the Ready
state

© Dr. Ayman Abdel-Hamid, OS

6

Advantages of

Breaking up a Process
• More processes may be maintained in

main memory

– Only load in some of the pieces of each

process

– With so many processes in main memory, it

is very likely a process will be in the Ready

state at any particular time

• A process may be larger than all of main

memory

© Dr. Ayman Abdel-Hamid, OS

7

Types of Memory

• Real memory

– Main memory

• Virtual memory

– Memory on disk

– Allows for effective multiprogramming and

relieves the user of tight constraints of main

memory

© Dr. Ayman Abdel-Hamid, OS

8

Thrashing

• Swapping out a piece of a process just

before that piece is needed

• The processor spends most of its time

swapping pieces rather than executing

user instructions

• We need to avoid thrashing

– Which pieces are least likely to be used in

the near future?

© Dr. Ayman Abdel-Hamid, OS

9

Principle of Locality

• Program and data references within a process

tend to cluster (Fig. 8.1, page 338)

• Only a few pieces of a process will be needed

over a short period of time

• Possible to make intelligent guesses about

which pieces will be needed in the future

• This suggests that virtual memory may work

efficiently

© Dr. Ayman Abdel-Hamid, OS

10

Support Needed for

Virtual Memory
• Hardware must support paging and/or

segmentation

• Operating system must be able to

manage the movement of pages and/or

segments between secondary memory

and main memory

© Dr. Ayman Abdel-Hamid, OS

11

Paging

• Each process has its own page table

• Each page table entry contains the frame

number of the corresponding page in

main memory

• A bit (the P bit) is needed to indicate

whether the page is in main memory or

not

© Dr. Ayman Abdel-Hamid, OS

12

Modify Bit in

Page Table
• Another modify bit (the M bit) is needed

to indicate if the page has been altered

since it was last loaded into main

memory

• If no change has been made, the page

does not have to be written to the disk

when it needs to be swapped out

© Dr. Ayman Abdel-Hamid, OS

13

Page Table Entries

© Dr. Ayman Abdel-Hamid, OS

14© Dr. Ayman Abdel-Hamid, OS

15

Page Tables

• The entire page table may take up too

much main memory

• Page tables are also stored in virtual

memory (see page 340)

• When a process is running, part of its

page table is in main memory

In such manner, page tables are subject to paging too!

© Dr. Ayman Abdel-Hamid, OS

16

Translation Lookaside Buffer

• Each virtual memory reference can

cause two physical memory accesses

– one to fetch the page table entry

– one to fetch the data

• To overcome this problem a high-speed

cache is set up for page table entries

– called the TLB - Translation Lookaside

Buffer

© Dr. Ayman Abdel-Hamid, OS

17

Translation Lookaside Buffer

• Contains page table entries that have

been most recently used

• Functions same way as a memory cache

© Dr. Ayman Abdel-Hamid, OS

18

Translation Lookaside Buffer

• Given a virtual address, processor

examines the TLB

• If page table entry is present (a hit), the

frame number is retrieved and the real

address is formed

• If page table entry is not found in the

TLB (a miss), the page number is used

to index the process page table

© Dr. Ayman Abdel-Hamid, OS

19

Translation Lookaside Buffer

• First checks if page is already in main

memory

– if not in main memory a page fault is issued

• The TLB is updated to include the new

page entry

© Dr. Ayman Abdel-Hamid, OS

20© Dr. Ayman Abdel-Hamid, OS

21© Dr. Ayman Abdel-Hamid, OS

22

Page Size

• Smaller page size, less amount of internal
fragmentation

• Smaller page size, more pages required per
process

• More pages per process means larger page
tables

• Larger page tables means large portion of page
tables in virtual memory

• Secondary memory is designed to efficiently
transfer large blocks of data so a large page
size is better

© Dr. Ayman Abdel-Hamid, OS

23

Page Size

• Small page size, large number of pages
will be found in main memory

• As time goes on during execution, the
pages in memory will all contain
portions of the process near recent
references � Page faults low.

• Increased page size causes pages to
contain locations further from any recent
reference� Page faults rise.

© Dr. Ayman Abdel-Hamid, OS

24© Dr. Ayman Abdel-Hamid, OS

25

Page Size

• Multiple page sizes provide the

flexibility needed to effectively use a

TLB

• Large pages can be used for program

instructions

• Small pages can be used for threads

• Most operating system support only one

page size

© Dr. Ayman Abdel-Hamid, OS

26

Example Page Sizes

© Dr. Ayman Abdel-Hamid, OS

27

Segmentation

• May be unequal, dynamic size

• Simplifies handling of growing data

structures

• Allows programs to be altered and

recompiled independently

• Lends itself to sharing data among

processes

• Lends itself to protection

© Dr. Ayman Abdel-Hamid, OS

28

Segment Tables

• corresponding segment in main memory

• Each entry contains the length of the

segment

• A bit is needed to determine if segment

is already in main memory

• Another bit is needed to determine if the

segment has been modified since it was

loaded in main memory

© Dr. Ayman Abdel-Hamid, OS

29

Segment Table Entries

© Dr. Ayman Abdel-Hamid, OS

30© Dr. Ayman Abdel-Hamid, OS

31

Combined Paging and

Segmentation
• Paging is transparent to the programmer

• Paging eliminates external fragmentation

• Segmentation is visible to the
programmer

• Segmentation allows for growing data
structures, modularity, and support for
sharing and protection

• Each segment is broken into fixed-size
pages

© Dr. Ayman Abdel-Hamid, OS

32

Combined Segmentation and

Paging

© Dr. Ayman Abdel-Hamid, OS

33© Dr. Ayman Abdel-Hamid, OS

34© Dr. Ayman Abdel-Hamid, OS

35

OS Software

• Fetch Policy

• Placement Policy

• Replacement Policy

• Resident Set Management

• Cleaning Policy

• Load Control

© Dr. Ayman Abdel-Hamid, OS

36

Fetch Policy

• Fetch Policy

– Determines when a page should be brought
into memory

– Demand paging only brings pages into main
memory when a reference is made to a
location on the page

• Many page faults when process first started

– Prepaging brings in more pages than needed

• More efficient to bring in pages that reside
contiguously on the disk

© Dr. Ayman Abdel-Hamid, OS

37

Placement Policy

• Where in real memory a process piece is to

reside?

• Pure Segmentation � best-fit, first-fit, and so

on (see chapter 7)

• Pure paging or combined with segmentation

� placement irrelevant, since address

translation HW and main memory access HW

can perform their functions for any page-frame

combination

© Dr. Ayman Abdel-Hamid, OS

38

Replacement Policy

• Which page is replaced?

• Page removed should be the page least

likely to be referenced in the near future

• Most policies predict the future behavior

on the basis of past behavior

© Dr. Ayman Abdel-Hamid, OS

39

Replacement Policy

• Frame Locking

– If frame is locked, it may not be replaced

– Kernel of the operating system

– Control structures

– I/O buffers

– Associate a lock bit with each frame

© Dr. Ayman Abdel-Hamid, OS

40

Basic Replacement

Algorithms
• Optimal policy

– Selects for replacement that page for

which the time to the next reference is the

longest

– Impossible to have perfect knowledge of

future events
Fixed frame allocation of 3 frames

© Dr. Ayman Abdel-Hamid, OS

41

Basic Replacement

Algorithms
• Least Recently Used (LRU)

– Replaces the page that has not been

referenced for the longest time

– By the principle of locality, this should be

the page least likely to be referenced in the

near future

– Each page could be tagged with the time of

last reference. This would require a great

deal of overhead.

© Dr. Ayman Abdel-Hamid, OS

42

Basic Replacement

Algorithms
• Least Recently Used (LRU)

© Dr. Ayman Abdel-Hamid, OS

43

Basic Replacement

Algorithms
• First-in, first-out (FIFO)

– Treats page frames allocated to a process as

a circular buffer

– Pages are removed in round-robin style

– Simplest replacement policy to implement

– Page that has been in memory the longest is

replaced

– These pages may be needed again very soon

© Dr. Ayman Abdel-Hamid, OS

44

Basic Replacement

Algorithms
• First-in, first-out (FIFO)

© Dr. Ayman Abdel-Hamid, OS

45

Basic Replacement

Algorithms
• Clock Policy

– Additional bit called a use bit

– When a page is first loaded in memory, the use bit is set
to 0

– When the page is referenced, the use bit is set to 1

– When it is time to replace a page, the first frame
encountered with the use bit set to 0 is replaced.

– During the search for replacement, each use bit set to 1
is changed to 0

– If all the frames have a use bit of 1, the pointer will
make one complete cycle through the buffer, setting all
use bits to zero, and stop at original position, replacing
page in the frame

– Frames candidate for replacement � circular buffer
with a pointer. When a page is replaced, the pointer is
set to indicate the next frame in the buffer

© Dr. Ayman Abdel-Hamid, OS

46© Dr. Ayman Abdel-Hamid, OS

47© Dr. Ayman Abdel-Hamid, OS

48

*: use bit is 1 arrow: current position of the pointer
© Dr. Ayman Abdel-Hamid, OS

49

Basic Replacement

Algorithms
• Please read Page Buffering algorithm on

page 361

– Representative is VAX VMS

– Simple FIFO

– In addition, a replaced page is not lost

– Replaced page is added to one of two lists

• free page list if page has not been modified

• modified page list

© Dr. Ayman Abdel-Hamid, OS

50

Resident Set Size

• Fixed-allocation

– gives a process a fixed number of pages

within which to execute

– when a page fault occurs, one of the pages

of that process must be replaced

• Variable-allocation

– number of pages allocated to a process

varies over the lifetime of the process

© Dr. Ayman Abdel-Hamid, OS

51

Replacement Scope

• Local replacement policy

– Chooses from resident pages of the process

that generated the page fault

• Global replacement policy

– Consider all unlocked pages as candidates

for replacement

© Dr. Ayman Abdel-Hamid, OS

52

Variable Allocation,

Global Scope
• Easiest to implement

• Adopted by many operating systems

• Operating system keeps list of free

frames

• Free frame is added to resident set of

process when a page fault occurs

• If no free frame, replaces one from

another process

© Dr. Ayman Abdel-Hamid, OS

53

Variable Allocation,

Local Scope
• When new process added, allocate

number of page frames based on

application type, program request, or

other criteria

• When page fault occurs, select page

from among the resident set of the

process that suffers the fault

• Reevaluate allocation from time to time

© Dr. Ayman Abdel-Hamid, OS

54

Cleaning Policy

When a modified page should be written

out to secondary memory?

• Demand cleaning

– a page is written out only when it has been

selected for replacement

• Precleaning

– pages are written out in batches

© Dr. Ayman Abdel-Hamid, OS

55

Cleaning Policy

• Best approach uses page buffering

– Replaced pages are placed in two lists

• Modified and unmodified

– Pages in the modified list are periodically

written out in batches

– Pages in the unmodified list are either

reclaimed if referenced again or lost when

its frame is assigned to another page

© Dr. Ayman Abdel-Hamid, OS

56

Load Control

• Determines the number of processes that

will be resident in main memory

(multiprogramming level)

• Too few processes � many occasions

when all processes will be blocked and

much time will be spent in swapping

• Too many processes will lead to

thrashing

© Dr. Ayman Abdel-Hamid, OS

57

Process Suspension

To reduce the degree of multiprogramming, one

or more of the current resident processes must

be suspended, but which?

• Lowest priority process

• Faulting process

– this process does not have its working set in main

memory so it will be blocked anyway

• Last process activated

– this process is least likely to have its working set

resident

© Dr. Ayman Abdel-Hamid, OS

58

Process Suspension

• Process with smallest resident set

– this process requires the least future effort

to reload

• Largest process

– obtains the most free frames

• Process with the largest remaining

execution window

© Dr. Ayman Abdel-Hamid, OS

