Operating Systems

Virtual Memory

Chapter 8

© Dr. Ayman Abdel-Hamid, OS

Outline

Hardware and Control Structures
Locality and virtual memory
Paging
Segmentation
Combined Paging and Segmentation
Protection and sharing

Operating System Software
Fetch policy
Placement policy
Replacement policy
Resident set management
Cleaning policy
Load Control

© Dr. Ayman Abdel-Hamid, OS

into physical addresses at run time

— A process may be swapped in and out of main
memory such that it occupies different regions
* A process may be broken up into pieces that
do not need to located contiguously in main
memory

— All pieces of a process do not need to be loaded in
main memory during execution

© Dr. Ayman Abdel-Hamid, OS 3

L‘ * Operating system brings into main
~ memory a few pieces of the program

* Resident set - portion of process that 1s
1N main memory
* An interrupt (memory access fault) 1s

generated when an address 1s needed that
1S not 1n main memory

* Operating system places the process 1n a
blocking state

© Dr. Ayman Abdel-Hamid, OS 4

address 1s brought into main memory

— Operating system 1ssues a disk I/O Read
request

— Another process 1s dispatched to run while
the disk I/O takes place

— An interrupt 1s 1ssued when disk 1I/0
complete which causes the operating system
to place the affected process in the Ready
state

© Dr. Ayman Abdel-Hamid, OS 5

* More processes may be maintained 1n
main memory

— Only load 1n some of the pieces of each
process

— With so many processes in main memory, it
1s very likely a process will be in the Ready
state at any particular time

* A process may be larger than all of main
memory

© Dr. Ayman Abdel-Hamid, OS 6

~ |« Real memor y
— Main memory
* Virtual memory

— Memory on disk

— Allows for effective multiprogramming and
relieves the user of tight constraints of main
memory

© Dr. Ayman Abdel-Hamid, OS 7

~ « Swapping out a piece of a process just

J before that piece 1s needed

-« The processor spends most of its time
swapping pieces rather than executing
user instructions

* We need to avoid thrashing

— Which pieces are least likely to be used in
the near future?

© Dr. Ayman Abdel-Hamid, OS

Program and data references within a process
tend to cluster (Fig. 8.1, page 338)

K Only a few pieces of a process will be needed
over a short period of time

* Possible to make intelligent guesses about
which pieces will be needed in the future

* This suggests that virtual memory may work
efficiently

© Dr. Ayman Abdel-Hamid, OS 9

|+ Hardware must support paging and/or
| segmentation

~ « Operating system must be able to
manage the movement of pages and/or
segments between secondary memory
and main memory

© Dr. Ayman Abdel-Hamid, OS 10

* Each process has its own page table

~ * Each page table entry contains the frame
number of the corresponding page in
main memory

* A bit (the P bit) 1s needed to indicate
whether the page 1s in main memory or
not

AN © Dr. Ayman Abdel-Hamid, OS 1

-+ Another modify bit (the M bit) is needed
~ toindicate if the page has been altered
since 1t was last loaded into main
memory

 If no change has been made, the page
does not have to be written to the disk
when it needs to be swapped out

© Dr. Ayman Abdel-Hamid, OS 12

Virtual Address

Pape Table Entry

p[sfosher Costi ity Frame Number

(a) Paging only

Figure 8.2 Typical Memory Management Formats

© Dr. Ayman Abdel-Hamid, OS 13

~ Virtual Address

I
I
I

[Page # | Omset | 4 Frame # Offset

|] +
i
I
i Reglster

| 1 e Tahle Ptr

: b

| I

i : Page Table

E ' .
I
' g

|]
1 | Frame #
I
I
I
I
I
I

Program I Paging Mechanism

I

© Dr. Ayman Abdel-Hamid, OS

ﬂ

Page
Frame

A

Main Memory

14

much main memory

-« Page tables are also stored in virtual
memory (see page 340)

* When a process 1s running, part of its
page table 1s i1n main memory

In such manner, page tables are subject to paging too!

© Dr. Ayman Abdel-Hamid, OS 15

* Each virtual memory reference can
cause two physical memory accesses

— one to fetch the page table entry

— one to fetch the data

* To overcome this problem a high-speed
cache 1s set up for page table entries

— called the TLB - Translation Lookaside
Buftfer

© Dr. Ayman Abdel-Hamid, OS 16

|« Contains page table entries that have
been most recently used

* Functions same way as a memory cache

© Dr. Ayman Abdel-Hamid, OS 17

examines t

e If page tab.

* (Gi1ven a virtual address, processor

ne TLLB

e entry 1s present (a hit), the

frame num
address 1s formed

ver 1S retrieved and the real

* If page table entry 1s not found in the
TLB (a miss), the page number 1s used
to index the process page table

© Dr. Ayman Abdel-Hamid, OS 18

< First checks if page is already in main
— memory
— 1f not 1n main memory a page fault 1s 1ssued

* The TLB 1s updated to include the new
page entry

© Dr. Ayman Abdel-Hamid, OS 19

RBetarn ti
Fawkled | nstruction

Pagpe Fault
Hanad ling Bowline

s [mstrucis CPL
o Read the Pape

:
;

CPLU Activaies
140 Hardware
Page Tramslerred -1-
from sk tao CPU Generates
Main Nemory Physical Address
Memaory Yes

Fuall?

Page Tahles
L pcka fed

LJE

© Dr. Ayman Abdel-Hamid, OS 20

- Virtnal Address

Page # | Offset

Translation
Lookaslde Buffer

P [T

TLE hit

Page Table

o

)

raas
=

TLE miss

Page fault

k. 4 ¥

Frame # Offset

Real Address

Main Memory

Laoad

Secondary

© Dr. Ayman Abdel-Hamid, OS

21

Smaller page size, less amount of internal
fragmentation

Smaller page size, more pages required per
process

More pages per process means larger page
tables

Larger page tables means large portion of page
tables 1n virtual memory

Secondary memory 1s designed to efficiently
transfer large blocks of data so a large page

ws S1ZE 1S better

© Dr. Ayman Abdel-Hamid, OS 22

will be found 1n main memory

~ * As time goes on during execution, the
. pages in memory will all contain
portions of the process near recent
references =2 Page faults low.

* Increased page size causes pages to
contain locations further from any recent
reference—> Page faults rise.

© Dr. Ayman Abdel-Hamid, OS 23

Page Fault Rate
Page Fault Rate

P W

{a) Page Size {b) Number of Page Frames Allocated

P = size of entire process
W= working set size
N = total number of pages in process

Figure 8.11 Typical Paging Behavior of a Program
© Dr. Ayman Abdel-Hamid, OS

24

Multiple page sizes provide the

flexibility needed to effectively use a
TLB

» Large pages can be used for program
instructions

* Small pages can be used for threads

* Most operating system support only one
page size

o e " \ © Dr. Ayman Abdel-Hamid, OS 25

Table 8.2 Example Page Sizes

Computer Page Size
Atlas 512 48-bit words
Honewaell-Multics 1024 36-bit word

IBM 37003 A and Z70/ES A 4 Ebytes

A family 212 bytes
IELL ASM400 512 bytes
DEC Alpha & Ebytes
LIPS 4 kbyes to 16 Wbytes
TTtrasPAERC 8 Ebytes to 4 Mbhytes
FPentium 4 Ebvytes or 4 Mbytes
FPowerPc 4 Ehytes

© Dr. Ayman Abdel-Hamid, OS 26

May be unequal, dynamic size
* Simplifies handling of growing data
| structures

* Allows programs to be altered and
recompiled independently

* Lends itself to sharing data among
processes

Lends 1tself to protection

© Dr. Ayman Abdel-Hamid, OS 27

* corresponding segment 1n main memory

~ ° Each entry contains the length ot the
~ segment

* A bit 1s needed to determine 1f segment
1s already 1in main memory

* Another bit 1s needed to determine if the
segment has been modified since it was
loaded 1n main memory

© Dr. Ayman Abdel-Hamid, OS 28

Virtual Address

Scgment Number

Sepment Table Entry

T prrcmmn] Temgn | SegmemBae

(b} Segmentation only

Figure 8.2 Typical Memory Management Formats

© Dr. Ayman Abdel-Hamid, OS 29

| |
1 1
Virtual Address : Segment Table :
Sea# | Offset=d |y o +) o Base+d I
| 1 1
: Register :
| Seg Table Ptr] |
1 1
1 1
1 Segment Table 1

d =

1 1 E
1 1

I + Eﬁ i 2
I o{ I
" "L) I
I [[Length [Base I
1 1
1 1
1 1

1 1 x./_\
1 1
Program I Segmentation Mechanism I Main Memory

1 1
1 1

Figure 8.12 Address Translation in a Segmentation System
© Dr. Ayman Abdel-Hamid, OS Ju

Paging 1s transparent to the programmer
Paging eliminates external fragmentation

Segmentation 1s visible to the
programmer

Segmentation allows for growing data
structures, modularity, and support for
sharing and protection

Each segment 1s broken into fixed-size

pages

© Dr. Ayman Abdel-Hamid, OS 31

Virtual Address

Sepment Table Entry

Oeber Coatrd Bits Lenzth Sepment Base

Pape Tahle Entry

r r Comtrod B Frame Number P= present bit

M = Modified bit
{c) Combined segmentation and paging

Figure 8.2 Typical Memory Management Formats

© Dr. Ayman Abdel-Hamid, OS 32

| | |
| | |
Virtual Address 1 i l i
| | |
Seg # | Page# | Offset | g i Frame #| Offset 1
| | 1 |
| I 0 I W
. 0 |
| | |
I (Seg Table Fir | |
| | |
1 Segment . Page 1
1 Table i Tahle 1
| | |
I N i WI_ }‘Fﬂgﬂ
[* i 1 rame
L, |# I
1	I \.-/_\
Program 1 Segmentation B Paging 1 Main Memory
: Mechanism : Mechanism :

Figure 8.13 Address Translation in a Segmentation/Paging System

© Dr. Ayman Abdel-Hamid, OS 33

Main Memory

Dispatcher
0 ACCEss
allovwed
Process A
Branch instroction
(o allowed)
Process B -+ H—
= = = = - e e - e e = R!IE[E]‘H:E'I]]
- data (allowed)
Process C
B e e Reference to
data (not allowed)
-
© Dr. Ayman Abdel-Hamid, OS 34

ure 8.14 Protection Relationships Between Segments

— aifd o

~ |+ Fetch Policy

* Placement Policy

* Replacement Policy

* Resident Set Management
* Cleaning Policy

Load Control

© Dr. Ayman Abdel-Hamid, OS 35

~ * Fetch Policy
= — Determines when a page should be brought
Into memory

— Demand paging only brings pages into main
memory when a reference 1s made to a
location on the page

* Many page faults when process first started

— Prepaging brings in more pages than needed

* More efficient to bring 1in pages that reside
contiguously on the disk

© Dr. Ayman Abdel-Hamid, OS 36

Where in real memory a process piece 1s to
reside?

» Pure Segmentation = best-fit, first-fit, and so
on (see chapter 7)

* Pure paging or combined with segmentation
- placement irrelevant, since address
translation HW and main memory access HW
can perform their functions for any page-frame
combination

© Dr. Ayman Abdel-Hamid, OS 37

* Which page 1s replaced?

* Page removed should be the page least
likely to be referenced in the near future

* Most policies predict the future behavior
on the basis of past behavior

- :.' - by \ © Dr. Ayman Abdel-Hamid, OS 38

~ |« Frame Locking
— If frame 1s locked, it may not be replaced
— Kernel of the operating system

— Control structures

— I/0 bufters

— Associate a lock bit with each frame

© Dr. Ayman Abdel-Hamid, OS 39

* Optimal policy

— Selects for replacement that page for
which the time to the next reference 1s the
longest

— Impossible to have perfect knowledge of

future events
Fixed frame allocation of 3 frames

Page address
dream : ¥ 2 1 3 2 4 3 3 1 5 2

1) [2] [[2 1 ™ 1] 2
OPT Sl N RN N [J [
] ; HRE HNE

lr|m|r.-'-m
mr_n|r.u-h-
H'jr..n|h-'lm

© Dr. Ayman Abdel-Hamid, OS 40

— Replaces the page that has not been
referenced for the longest time

— By the principle of locality, this should be
the page least likely to be referenced in the
near future

— Each page could be tagged with the time of
last reference. This would require a great
deal of overhead.

© Dr. Ayman Abdel-Hamid, OS 41

Page address
stream

orT

LRU

* Least Recently Used (LRU)

2 3 2 I 5 2 4 5 3 2 5 2
2 2 2 2 2 2 4 4 4 2 2 2
o I o R e e e e e e
| 5 5 5 5 5 5 5 5
F F F
2)) 2 2 2 2) 3 A A A
3 3 3 3 3 3 3 3 3 3 3
| | | 4 4 4 2 2 2
F F F F
© Dr. Ayman Abdel-Hamid, OS 42

~ * First-1n, first-out (FIFO)

— — Treats page frames allocated to a process as
a circular buffer

— Pages are removed in round-robin style

— Simplest replacement policy to implement

— Page that has been in memory the longest is
replaced

— These pages may be needed again very soon

© Dr. Ayman Abdel-Hamid, OS 43

Page address
stream

OPT

LRU

FIFO

* First-1n, first-out (FIFO)

3 2 1 3 2 4 3 3 2 5 2
2 2 2 2 2 4 4 4 2 2 2
o o o e e e e e e
| 5 5 5] 5] 5]
F F F
D 2 @[@ E
3 3 3 5 5 5 5 5 5 5 5
| | 1 4 4 4 2 2 2
F F F F
2 2 2 5] 5 5 3] LA
3 3 3 3 2 2 2 2 2 5 5
| | 1 4 4 4 4 4 2
F F F F F F
© Dr. Ayman Abdel-Hamid, OS 44

Clock Policy
— Additional bit called a use bit

When a page is first loaded in memory, the use bit is set
to 0

When the page is referenced, the use bit is set to 1

When it is time to replace a page, the first frame
encountered with the use bit set to 0 is replaced.

During the search for replacement, each use bit set to 1
1s changed to 0

If all the frames have a use bit of 1, the pointer will
make one complete cycle through the buffer, setting all
use bits to zero, and stop at original position, replacing
page in the frame

Frames candidate for replacement - circular buffer
with a pointer. When a page is replaced, the pointer is

set to indicate the next frame in the buffer
© Dr. Ayman Abdel-Hamid, OS 45

First frame in

circular buffer of
n-1 0 frames that are
candidates for replacemen

(a) State of buflfer just prior to a page re place ment

e 8.16 Example of Clock Policy Operation

© Dr. Ayman Abdel-Hamid, OS 46

(b} State of udfer just after the next pape replacement

e 8.16 Example of Clock Policy Operation

© Dr. Ayman Abdel-Hamid, OS 47

'\

o il
_
.f

= Page address

IMH**’H

= =
Q% sream X 3 2 1 5 2 4 5 3 2 5 2
LB E
=
i IO ™M e
OPT T 3R R
1 [3] 3] 5] 5] 3 5] 5] G
F F ¥
N E
LRU 33 3 B E E B E O
T [[0 [& OO [2 2
F F FooT
OO E = EEE 3] [3]
FIFO T] EE
O O O OO OO OO OO O @
F F F F F ¥

2# 2# 1# -y 1# 5# 5# -y 5# _.j 5# 3# 3# _.j 3# -y 3#
CLOCK — 3* 3 = E 3* 2% e 21 2F] (2] [2%]
s | 1# 1 | 1 7 [¥ i 4 5% 5+

F F F F F

*:use bitis 1 arrow: current position of the pointer
© Dr. Ayman Abdel-Hamid, OS 48

| * Please read Page Buffering algorithm on

page 361
— Representative 1s VAX VMS
— Simple FIFO
— In addition, a replaced page 1s not lost

— Replaced page 1s added to one of two lists
* free page list if page has not been modified

* modified page list

© Dr. Ayman Abdel-Hamid, OS 49

-« Fixed-allocation

— gives a process a fixed number of pages
within which to execute

— when a page fault occurs, one of the pages
of that process must be replaced

* Variable-allocation

— number of pages allocated to a process
varies over the lifetime of the process

o 2 e \ © Dr. Ayman Abdel-Hamid, OS 50

* Local replacement policy

— Chooses from resident pages of the process
that generated the page fault

* Global replacement policy

— Consider all unlocked pages as candidates
for replacement

© Dr. Ayman Abdel-Hamid, OS 51

Easiest to implement

~ ° Adopted by many operating systems

* Operating system keeps list of free
frames

* Free frame 1s added to resident set of
process when a page fault occurs

If no free frame, replaces one from
another process

© Dr. Ayman Abdel-Hamid, OS 52

* When new process added, allocate
number of page frames based on
application type, program request, or
other criteria

* When page fault occurs, select page
from among the resident set of the
process that suffers the fault

* Reevaluate allocation from time to time

© Dr. Ayman Abdel-Hamid, OS 53

- When a modified page should be written
- out to secondary memory?

-+ Demand cleaning

— a page 1s written out only when it has been
selected for replacement

* Precleaning

— pages are written out in batches

© Dr. Ayman Abdel-Hamid, OS 54

| * Best approach uses page buffering

— Replaced pages are placed in two lists
* Modified and unmodified

— Pages 1in the modified list are periodically
written out in batches

— Pages in the unmoditied list are either
reclaimed if referenced again or lost when
its frame 1s assigned to another page

© Dr. Ayman Abdel-Hamid, OS 55

- | » Determines the number of processes that
. will be resident 1n main memory
(multiprogramming level)

* Too few processes = many occasions
when all processes will be blocked and
much time will be spent 1n swapping

* Too many processes will lead to
thrashing

© Dr. Ayman Abdel-Hamid, OS 56

- To reduce the degree of multiprogramming, one
or more of the current resident processes must
be suspended, but which?

* Lowest priority process

* Faulting process

— this process does not have its working set in main
memory so i1t will be blocked anyway

 Last process activated

— this process 1s least likely to have its working set
resident

© Dr. Ayman Abdel-Hamid, OS 57

* Process with smallest resident set

— this process requires the least future effort
to reload

* Largest process

— obtains the most free frames

* Process with the largest remaining
execution window

© Dr. Ayman Abdel-Hamid, OS 58

