
1

Concurrency: Mutual Exclusion

and Synchronization

Chapter 5

Operating Systems

© Dr. Ayman Abdel-Hamid, OS

2

Outline

•Principles of Concurrency

•Mutual Exclusion Software Approaches

•Mutual Exclusion: Hardware Support

•Mutual Exclusion: OS and programming

language support

–Semaphores

© Dr. Ayman Abdel-Hamid, OS

3

Concurrency

Concurrency affects a number of design

issues

• Communication among processes

• Sharing resources

• Synchronization of multiple processes

• Allocation of processor time

© Dr. Ayman Abdel-Hamid, OS

4

Concurrency

Concurrency contexts

• Multiple applications

– Multiprogramming

• Structured application

– Application can be a set of concurrent
processes

• Operating-system structure

– Operating system is a set of processes or
threads

© Dr. Ayman Abdel-Hamid, OS

5

Difficulties with Concurrency

The relative speed of execution of processes

cannot be predicted

• Sharing global resources

– Two processes access the same global variable?

• Management of allocation of resources

– A process is allocated an I/O channel and then is

suspended before using that channel?

• Programming errors difficult to locate

© Dr. Ayman Abdel-Hamid, OS

6

A Simple Example

void echo()

{

chin = getchar();

chout = chin;

putchar(chout);

}

chin and chout are

shared global

variables

© Dr. Ayman Abdel-Hamid, OS

7

A Simple Example

Process P1

chin = getchar();

//Process P1 is

interrupted

chout = chin;

putchar(chout);

Process P2

.

Run to completion

Single-processor multiprogramming system

Shared procedure

What will happen?

© Dr. Ayman Abdel-Hamid, OS

8

A Simple Example

Process P1

chin = getchar();

//Process P1 is

interrupted

//Process P1 resumed

chout = chin;

putchar(chout);

Process P2

.

//P2 blocked from
entering the

procedure

Single-processor multiprogramming system

Only one process at a time may be in that

procedure

What will happen?

© Dr. Ayman Abdel-Hamid, OS

9

A Simple Example

Process P1 Process P2

. .

chin = getchar(); .

. chin = getchar();

chout = chin; chout = chin;

putchar(chout); .

. putchar(chout);

. .
Multiprocessor system, P1 and P2 each on a

separate processor invoking the echo proc.

© Dr. Ayman Abdel-Hamid, OS

10

Operating System Concerns

• Keep track of active processes

• Allocate and deallocate resources

– Processor time

– Memory

– Files

– I/O devices

• Protect data and resources

• Result of process must be independent of the
speed of execution of other concurrent
processes

© Dr. Ayman Abdel-Hamid, OS

11

Process Interaction

• Processes unaware of each other

– Competition among processes for resources

• Processes indirectly aware of each other

– Cooperation among processes by sharing

(share access to the same object)

• Process directly aware of each other

– Cooperation among processes by

communication (communicate by process

IDs)

© Dr. Ayman Abdel-Hamid, OS

12

Competition Among

Processes for Resources 1/2

3 control problems

• The need for Mutual Exclusion

– Critical sections

• The portion of the program that uses a critical
resource (a non-sharable resource)

• Only one program at a time is allowed in its critical
section

• Example only one process at a time is allowed to
send command to the printer

• Deadlock

• Starvation

© Dr. Ayman Abdel-Hamid, OS

13

Competition Among

Processes for Resources 2/2

Mutual Exclusion mechanism in abstract terms

/* program mutualexclusion */

const int n = /*number of processes*/

void P(int i)

{

while (true)

{

entercritical (i);

/*critical section */

exitcritical(i);

/* remainder */

}

}

void main ()

{

parbegin(P(R1), P(R2), …., P(Rn));

}

© Dr. Ayman Abdel-Hamid, OS

14

Cooperation Among Processes

by Sharing
• Access to shared data

• Data items accessed in reading and
writing modes

• Writing must be mutually exclusive

• Critical sections are used to provide data
integrity � data coherence

P1: P2:

a = a+1; b = 2 * b;

b = b+1; a = 2 * a;
Maintain a=b

© Dr. Ayman Abdel-Hamid, OS

15

Cooperation Among Processes

by Communication
• Messages are passed

– Mutual exclusion is not a control
requirement

• Possible to have deadlock

– Each process waiting for a message from
the other process

• Possible to have starvation

– Two processes sending message to each
other while another process waits for a
message

© Dr. Ayman Abdel-Hamid, OS

16

Requirements for Mutual

Exclusion 1/3

• Only one process at a time is allowed in

the critical section for a resource

• A process that halts in its non-critical

section must do so without interfering

with other processes

• No deadlock or starvation

© Dr. Ayman Abdel-Hamid, OS

17

Requirements for Mutual

Exclusion 2/3

• A process must not be delayed access to

a critical section when there is no other

process using it

• No assumptions are made about relative

process speeds or number of processes

• A process remains inside its critical

section for a finite time only

© Dr. Ayman Abdel-Hamid, OS

18

Requirements for Mutual

Exclusion 3/3

How can the requirements be satisfied?

• Processes responsibility, no support

from OS or programming language

– Software approaches

• Special-purpose machine instructions

• Some level of support within the OS or a

programming language

© Dr. Ayman Abdel-Hamid, OS

19

Mutual Exclusion: Software

Approaches
• Assume elementary mutual exclusion at

memory access level

– Simultaneous access to same location in

memory are serialized by some sort of

memory arbiter

• Dekker’s Algorithm (reported by Dijkstra)

– 4 attempts to reach the correct solution!

• Peterson’s Algorithm

© Dr. Ayman Abdel-Hamid, OS

20

First Attempt 1/2

• Busy Waiting

– Process is always checking to see if it can

enter the critical section

– Process can do nothing productive until it

gets permission to enter its critical section

© Dr. Ayman Abdel-Hamid, OS

21

First Attempt 2/2

• Turn variable (figure 5.2a)

P0 P1

while (turn != 0) /**/; while (turn != 1) /**/;

/*critical section*/ /*critical section*/

turn = 1; turn = 0;

– Shared global variable turn indicates who is

allowed to enter next, can enter if turn = me

– On exit, point variable to other process

– Processes must strictly alternate � pace of

execution dictated by slower process

– If one process fails, other process is permanently

blocked © Dr. Ayman Abdel-Hamid, OS

22

Coroutine

• Designed to be able to pass execution

control back and forth between

themselves

• Inadequate to support concurrent

processing

© Dr. Ayman Abdel-Hamid, OS

23

Second Attempt 1/2

• Each process can examine the other’s status
but cannot alter it

• When a process wants to enter the critical
section is checks the other processes first

• If no other process is in the critical section, it
sets its status for the critical section

• This method does not guarantee mutual
exclusion

– Each process can check the flags and then proceed
to enter the critical section at the same time

© Dr. Ayman Abdel-Hamid, OS

24

Second Attempt 2/2

• “Busy” Flag � state information (figure 5.2b)

P0 P1

while (flag[1]) /**/; while (flag[0]) /**/;

flag[0] = true; flag[1] = true;

/*critical section*/ /*critical section*/

flag[0] = false; flag[1] = false;

– Each process has a flag to indicate it is in the
critical section

– Fails mutual exclusion if processes are in
lockstep

– What happens if a process fails inside its
critical section?

© Dr. Ayman Abdel-Hamid, OS

25

Third Attempt 1/2

• Set flag to enter critical section before check

other processes

• If another process is in the critical section

when the flag is set, the process is blocked

until the other process releases the critical

section

• Deadlock is possible when two process set

their flags to enter the critical section. Now

each process must wait for the other process to

release the critical section

© Dr. Ayman Abdel-Hamid, OS

26

Third Attempt 2/2

•Busy Flag Modified (figure 5.2c)

P0 P1

flag[0] = true; flag[1] = true;

while (flag[1]) /**/; while (flag[0])/**/;

/*critical section*/ /*critical section*/

flag[0] = false; flag[1] = false;

•Guarantees mutual exclusion

•Deadlock if processes are in lockstep (both processes

set their flags to true before either has executed the

while statement)

© Dr. Ayman Abdel-Hamid, OS

27

Fourth Attempt 1/3

• A process sets its flag to indicate its

desire to enter its critical section but is

prepared to reset the flag

• Other processes are checked. If they are

in the critical region, the flag is reset and

later set to indicate desire to enter the

critical region. This is repeated until the

process can enter the critical region.

© Dr. Ayman Abdel-Hamid, OS

28

Fourth Attempt 2/3

• It is possible for each process to set their

flag, check other processes, and reset

their flags. This scenario will not last

very long so it is not deadlock. It is

undesirable

© Dr. Ayman Abdel-Hamid, OS

29

Fourth Attempt 3/3

•Busy Flag Again (figure 5.2d)

P0 P1

flag[0] = true; flag[1] = true;

while (flag[1]) while (flag[0])

{ {

flag[0] = false; flag[1] = false;

/*delay*/ /*delay*/

flag[0] = true; flag[1] = true;

} }

/*critical section*/ /*critical section*/

flag[0] = false; flag[1] = false;

•Livelock if processes are in lockstep

© Dr. Ayman Abdel-Hamid, OS

30

Correct Solution 1/2

• Each process gets a turn at the critical

section

• If a process wants the critical section, it

sets its flag and may have to wait for its

turn

© Dr. Ayman Abdel-Hamid, OS

31

Correct Solution 2/2

void P0()

{

while (true)

{

flag [0] = true;

while (flag [1])

if (turn == 1)

{

flag [0] = false;

while (turn == 1)

/* do nothing */;

flag [0] = true;

}

/* critical section */;

turn = 1;

flag [0] = false;

/* remainder */;

}

}

//see Fig. 5.3

boolean flag [2];

int turn;

void main ()

{

flag [0] = false;

flag [1] = false;

turn = 1;

parbegin (P0, P1);

}

© Dr. Ayman Abdel-Hamid, OS

32

Peterson’s Algorithm

P0 P1

while (true) while (true)

{ {

flag[0] = true; flag[1] = true;

turn = 1; turn = 0;

while (flag[1] && while (flag[0] &&

turn == 1) /**/; turn == 0) /**/;

/*critical section*/ /*critical section*/

flag[0] = false; flag[1] = false;

} }

Can you show that mutual exclusion is preserved?

See page 212
© Dr. Ayman Abdel-Hamid, OS

33

Mutual Exclusion:

Hardware Support 1/5

• Interrupt Disabling

– A process runs until it invokes an operating-
system service or until it is interrupted

– Disabling interrupts guarantees mutual
exclusion

– Processor is limited in its ability to
interleave programs

– Multiprocessing

• disabling interrupts on one processor will
not guarantee mutual exclusion

© Dr. Ayman Abdel-Hamid, OS

34

Mutual Exclusion:

Hardware Support 2/5

• Special Machine Instructions

– At a hardware level, access to a memory

location excludes any other access to the

same location

– Performed in a single instruction cycle (Not

subject to interference from other

instructions)

• Reading and writing

• Reading and testing

© Dr. Ayman Abdel-Hamid, OS

35

Mutual Exclusion:

Hardware Support 3/5

• Test and Set Instruction

boolean testset (int i) {

if (i == 0) {

i = 1;

return true;

}

else {

return false;

}

}
Carried out atomically, not

subject to interruption

© Dr. Ayman Abdel-Hamid, OS

36

Mutual Exclusion:

Hardware Support 4/5

/* program mutualexclusion */

const int n = /* number of processes */;

int bolt;

void P(int i)

{

while (true)

{

while (!testset (bolt)) /* do nothing */;

/* critical section */;

bolt = 0;

/* remainder */

}

}

void main()

{

bolt = 0;

parbegin (P(1), P(2), . . . ,P(n));

}

A process

that finds

bolt equal to

zero can

enter its

critical

section

© Dr. Ayman Abdel-Hamid, OS

37

Mutual Exclusion:

Hardware Support 5/5

• Exchange Instruction

void exchange(int register,

int memory) {

int temp;

temp = memory;

memory = register;

register = temp;

} See Fig. 5.5b for a mutual exclusion

protocol based on this instruction
© Dr. Ayman Abdel-Hamid, OS

38

Mutual Exclusion Machine

Instructions
• Advantages

– Applicable to any number of processes on

either a single processor or multiple

processors sharing main memory

– It is simple and therefore easy to verify

– It can be used to support multiple critical

sections

© Dr. Ayman Abdel-Hamid, OS

39

Mutual Exclusion Machine

Instructions
• Disadvantages

– Busy-waiting consumes processor time

– Starvation is possible when a process leaves

a critical section and more than one process

is waiting.

– Deadlock

• If a low priority process has the critical region

and a higher priority process needs, the higher

priority process will obtain the processor to wait

for the critical region

© Dr. Ayman Abdel-Hamid, OS

40

Mutual Exclusion:

OS and programming support
• Semaphores

• Monitors

• Message Passing

© Dr. Ayman Abdel-Hamid, OS

41

Semaphores 1/5

• Two or more processes can cooperate by
means of simple signals

• A process is forced to stop at a specified place
until it has received a specific signal

• Special variable called a semaphore is used for
signaling

– To transmit a signal via a semaphore s, a process
executes primitive signal(s) (V � increment in
dutch)

– To receive a signal via semaphore s, a process
executes primitive wait(s) (P � test in dutch)

© Dr. Ayman Abdel-Hamid, OS

42

Semaphores 2/5

• If a process is waiting for a signal, it is

suspended until that signal is sent

• Wait and signal operations cannot be

interrupted

• Queue is used to hold processes waiting

on the semaphore

© Dr. Ayman Abdel-Hamid, OS

43

Semaphores 3/5

• Semaphore is a variable that has an integer

value

– May be initialized to a nonnegative number

– wait operation decrements the semaphore value

• If value becomes negative, process executing the wait is

blocked

– signal operation increments semaphore value

• If value is not positive, a process blocked by a wait

operation is unblocked

© Dr. Ayman Abdel-Hamid, OS

44

Semaphores 4/5

Definition of semaphore

primitives

See Fig. 5.6

Strong semaphore versus

weak semaphore

(specification of order of

processes to be removed

from queue)

© Dr. Ayman Abdel-Hamid, OS

45

Semaphores 5/5

Definition of binary

semaphore primitives

See Fig. 5.7

© Dr. Ayman Abdel-Hamid, OS

46

Mutual Exclusion using

Semaphores

One process is

allowed in its critical

section at a time

© Dr. Ayman Abdel-Hamid, OS

47

Producer/Consumer Problem

• One or more producers are generating

data and placing these in a buffer

• A single consumer is taking items out of

the buffer one at time

• Only one producer or consumer may

access the buffer at any one time

© Dr. Ayman Abdel-Hamid, OS

48

Producer

producer:

while (true) {

/* produce item v */

b[in] = v;

in++;

}

Infinite buffer

© Dr. Ayman Abdel-Hamid, OS

49

Consumer

consumer:

while (true) {

while (in <= out)

/*do nothing */;

w = b[out];

out++;

/* consume item w */

}
Must not attempt to read from an

empty buffer (in > out)
© Dr. Ayman Abdel-Hamid, OS

50

Producer/Consumer using Binary

Semaphores
Producer

do forever

produce item

waitB(s)

append

n++

if (n == 1)

signalB(delay)

signalB(s)

Consumer

wait(delay)

do forever

waitB(s)

remove from queue

n--

m = n

signalB(s)

if (m = 0) waitB(delay)

n: number of items in the buffer, init to 0

s: semaphore used to enforce mutual exclusion, init to 1

delay: semaphore used to force consumer to wait if

buffer is empty, init to 0

Fig. 5.13

© Dr. Ayman Abdel-Hamid, OS

51

Producer/Consumer using

Counting Semaphores
Producer

do forever

produce()

wait(s)

append()

signal(s)

signal(n)

Consumer

do forever

wait(n)

wait(s)

take()

signal(s)

consume()

n: semaphore, number of items in the buffer, init to 0

s: semaphore used to enforce mutual exclusion, init to 1

Fig. 5.14

What happens if these 2

statements are interchanged?

© Dr. Ayman Abdel-Hamid, OS

52

Producer with Circular Buffer

producer:

while (true) {

/* produce item v */

while ((in + 1) % n == out)

/* do nothing */;

b[in] = v;

in = (in + 1) % n

}

© Dr. Ayman Abdel-Hamid, OS

53

Consumer with Circular

Buffer
consumer:

while (true) {

while (in == out)

/* do nothing */;

w = b[out];

out = (out + 1) % n;

/* consume item w */

}

© Dr. Ayman Abdel-Hamid, OS

54© Dr. Ayman Abdel-Hamid, OS

55

Producer/Consumer using

circular buffer
Producer

do forever

produce()

wait(e)

wait(s)

append()

signal(s)

signal(n)

Consumer

do forever

wait(n)

wait(s)

take()

signal(s)

signal(e)

consume()

n: semaphore, number of items in the buffer, init to 0

s: semaphore used to enforce mutual exclusion, init to 1

e: semaphore, number of empty spaces in buffer, init to

size of buffer

Fig. 5.16

© Dr. Ayman Abdel-Hamid, OS

