
TCP © Dr. Ayman Abdel-Hamid, CC231 1

CC231

Introduction to Networks

Dr. Ayman A. Abdel-Hamid

CCIT - AASTMT

Transmission Control Protocol (TCP)

TCP © Dr. Ayman Abdel-Hamid, CC231 2

Outline

•Transmission Control Protocol

TCP © Dr. Ayman Abdel-Hamid, CC231 3

Transport Layer 1/2

TCP © Dr. Ayman Abdel-Hamid, CC231 4

Transport Layer 2/2

Process-to-process delivery

TCP © Dr. Ayman Abdel-Hamid, CC231 5

Transport Layer Addressing

Addresses

•Data link layer � MAC address

•Network layer � IP address

•Transport layer � Port number (choose among multiple

processes running on destination host)

TCP © Dr. Ayman Abdel-Hamid, CC231 6

Port Numbers

•Port numbers are 16-bit integers (0 � 65,535)

�Servers use well know ports, 0-1023 are privileged

�Clients use ephemeral (short-lived) ports

•Internet Assigned Numbers Authority (IANA) maintains a list of

port number assignment

�Well-known ports (0-1023) � controlled and assigned by

IANA

�Registered ports (1024-49151) � IANA registers and lists

use of ports as a convenience (49151 is ¾ of 65536)

�Dynamic ports (49152-65535) � ephemeral ports

�For well-known port numbers, see /etc/services on a UNIX or

Linux machine

TCP © Dr. Ayman Abdel-Hamid, CC231 7

Socket Addressing

•Process-to-process delivery needs two identifiers

�IP address and Port number

�Combination of IP address and port number is called a

socket address (a socket is a communication endpoint)

�Client socket address uniquely identifies client process

�Server socket address uniquely identifies server process

•Transport-layer protocol needs a pair of socket addresses

�Client socket address

�Server socket address

�For example, socket pair for a TCP connection is a 4-tuple

�Local IP address, local port, and

�foreign IP address, foreign port

TCP © Dr. Ayman Abdel-Hamid, CC231 8

Multiplexing and Demultiplexing

Multiplexing

Sender side may have

several processes that

need to send packets

(albeit only 1 transport-

layer protocol)

Demultiplexing

At receiver side, after

error checking and

header dropping,

transport-layer delivers

each message to

appropriate process

TCP © Dr. Ayman Abdel-Hamid, CC231 9

Transmission Control Protocol 1/13

•TCP must perform typical transport layer functions:

�Segmentation � breaks message into packets

�End-to-end error control �since IP is an unreliable Service

�End-to-end flow control � to avoid buffer overflow

�Multiplexing and demultiplexing sessions

•TCP is [originally described in RFC 793, 1981]

�Reliable

�Connection-oriented � virtual circuit

�Stream-oriented � users exchange streams of data

�Full duplex � concurrent transfers can take place in both

directions

�Buffered � TCP accepts data and transmits when appropriate

(can be overridden with “push”)

TCP © Dr. Ayman Abdel-Hamid, CC231 10

Transmission Control Protocol 2/13

•Reliable

�requires ACK and performs retransmission

�If ACK not received, retransmit and wait a longer time for

ACK. After a number of retransmissions, will give up

�How long to wait for ACK? (dynamically compute RTT for

estimating how long to wait for ACKs, might be ms for LANs or

seconds for WANs)

RTT = α * old RTT + (1- α)* new RTT where α usually 90%

�Most common, Retransmission time = 2* RTT

�Acknowledgments can be “piggy-backed” on reverse direction

data packets or sent as separate packets

TCP © Dr. Ayman Abdel-Hamid, CC231 11

Transmission Control Protocol 3/13

•Sequence Numbers

�Associated with every byte that it sends

�To detect packet loss, reordering and duplicate removal

�Two fields are used sequence number and acknowledgment

number. Both refer to byte number and not segment number

�Sequence number for each segment is the number of the first

byte carried in that segment

�The ACK number denotes the number of the next byte that

this party expects to receive (cumulative)

�If an ACK number is 5643 � received all bytes from beginning up to

5642

�This acknowledges all previous bytes as received error-free

TCP © Dr. Ayman Abdel-Hamid, CC231 12

Transmission Control Protocol 4/13

•Sending and Receiving buffers

�Senders and receivers may not produce and consume data at

same speed

�2 buffers for each direction (sending and receiving buffer)

TCP © Dr. Ayman Abdel-Hamid, CC231 13

Transmission Control Protocol 5/13

•TCP uses a sliding window mechanism for flow control

•Sender maintains 3 pointers for each connection

�Pointer to bytes sent and acknowledged

�Pointer to bytes sent, but not yet acknowledged

�Sender window includes bytes sent but not acknowledged

�Pointer to bytes that cannot yet be sent

TCP © Dr. Ayman Abdel-Hamid, CC231 14

Transmission Control Protocol 6/13

•Flow Control

�Tell peer exactly how many bytes it is willing to accept

(advertised window � sender can not overflow receiver buffer)

�Sender window includes bytes sent but not acknowledged

�Receiver window (number of empty locations in receiver buffer)

�Receiver advertises window size in ACKs

�Sender window <= receiver window (flow control)

�Sliding sender window (without a change in receiver’s advertised

window)

�Expanding sender window (receiving process consumes data faster than

it receives � receiver window size increases)

�Shrinking sender window (receiving process consumes data more

slowly than it receives � receiver window size reduces)

�Closing sender window (receiver advertises a window of zero)

TCP © Dr. Ayman Abdel-Hamid, CC231 15

Transmission Control Protocol 7/13

•Error Control

�Mechanisms for detecting corrupted segments, lost segments,

out-of-order segments, and duplicated segments

�Tools: checksum (corruption), ACK, and time-out (one time-

out counter per segment)

�Lost segment or corrupted segment are the same situation:

segment will be retransmitted after time-out (no NACK in

TCP)

�Duplicate segment (destination discards)

�Out-of-order segment (destination does not acknowledge,

until it receives all segments that precede it)

�Lost ACK (loss of an ACK is irrelevant, since ACK

mechanism is cumulative)

TCP © Dr. Ayman Abdel-Hamid, CC231 16

Transmission Control Protocol 8/13

•Congestion Control

�TCP assumes the cause of a lost segment is due to congestion

in the network

�If the cause of the lost segment is congestion, retransmission of

the segment does not remove the problem, it actually aggravates

it

�The network needs to tell the sender to slow down (affects the

sender window size in TCP)

�Actual window size = Min (receiver window size, congestion

window size)

�The congestion window is flow control imposed by the sender

�The advertised window is flow control imposed by the receiver

TCP Review © Dr. Ayman Abdel-Hamid, CS5984 Spring 2006 17

Congestion Control 9/13

•Slow start

�At start of connection, set congestion window size to

maximum segment size

�For each segment ACKed, increase congestion window size

by 1 maximum segment size until it reaches a threshold of one-

half allowable window size

�Exponential increase in size

�Send 1 segment, receive 1 ACK, increase size to 2 segments

�Send 2 segments, receive 2 ACKs, increase size to 4 segments

�Send 4 segments, receives 4 ACKs, increase size to 8 segments

TCP Review © Dr. Ayman Abdel-Hamid, CS5984 Spring 2006 18

Congestion Control 10/13

•Additive Increase (Congestion Avoidance phase)

�After size reaches threshold, size is increased one segment for each

ACK, even if ACK is for several segments (this continues as long as

ACKs arrive before time-outs, or congestion window reaches the

receiver window value)

•Multiplicative Decrease

�If a time-out occurs, threshold set to one-half of last congestion

window size, and congestion window size starts from 1 (return to

slow start)

�Threshold reduced to one-half current congestion window size

every time a time-out occurs (exponential reduction)

�Exponential growth stops when the threshold is hit

�Afterwards, successful transmissions grow congestion window

linearly

•Such congestion control often referred to as TCP Tahoe

TCP © Dr. Ayman Abdel-Hamid, CC231 19

Transmission Control Protocol 11/13

•Congestion Control

0

4

8

12

16

20

24

28

32

36

40

44

0 2 4 6 8 10 12 14 16 18 20 22 24 26

Transmission number

c
o

n
g

e
s

ti
o

n
 w

in
d

o
w

 s
iz

e
 i

n
 K

b
y

te
s

Series1

TCP Review © Dr. Ayman Abdel-Hamid, CS5984 Spring 2006 20

TCP Variants 12/13

•TCP Tahoe (first implemented in 4.3 BSD, 1988)

�Slow start + Congestion avoidance and fast retransmit

�Fast Retransmit

�Triggers the transmission of a dropped segment if three

dup ACKs for a segment are received before the occurrence

of the segment's timeout

�TCP required to immediately generate a dup ACK if an

out-of-order segment is received (on receiving a dup ACK,

cant tell if the reason is a reorder of segments or a lost

segment, hence the wait to receive a number of dup ACKs)

�Fast Retransmit was incorrectly followed by slow start

TCP © Dr. Ayman Abdel-Hamid, CC231 21

Transmission Control Protocol 13/13

•Full-Duplex

�send and receive data in both directions.

�Keep sequence numbers and window sizes for each direction

of data flow

TCP © Dr. Ayman Abdel-Hamid, CC231 22

TCP Connection Establishment

Passive open

SYN: Synchronize

ACK: Acknowledge

TCP © Dr. Ayman Abdel-Hamid, CC231 23

TCP Options
Each SYN can contain TCP options

•MSS Option

�maximum segment � the maximum amount of data it is

willing to accept in each TCP segment

�Sending TCP uses receiver’s MSS as its MSS

•Window Scale Option

�maximum window is 65,535 bytes (corresponding field in TCP

header occupies 16 bits)

�it can be scaled (left-shifted) by 0-14 bits providing a

maximum of 65,535 * 214 bytes (one gigabyte)

�Option needed for high-speed connections or long delay paths

�In this case, the other side must send the option with its

SYN

TCP © Dr. Ayman Abdel-Hamid, CC231 24

TCP MSS and output
•TCP MSS is = (interface MTU – fixed sizes of IP and TCP headers (20 bytes))

�MSS on an Ethernet (IPv4)= 1460 bytes (1500 (why?) - 40)

•Successful return from write implies you can reuse application buffer

TCP © Dr. Ayman Abdel-Hamid, CC231 25

TCP Connection Termination

•FIN: Finish

•Step 1 can be sent with data

•Steps 2 and 3 can be combined into 1 segment

TCP © Dr. Ayman Abdel-Hamid, CC231 26

State Transition Diagram 1/4

Typical TCP

states visited

by a TCP

client

TCP © Dr. Ayman Abdel-Hamid, CC231 27

State Transition Diagram 2/4

Typical

TCP

states

visited by

a TCP

server

TCP © Dr. Ayman Abdel-Hamid, CC231 28

State Transition Diagram 3/4

State Description

CLOSED There is no connection.

LISTEN The server is waiting for calls from the client.

SYN-SENT A connection request is sent; waiting for acknowledgment.

SYN-RCVD A connection request is received.

ESTABLISHED Connection is established.

FIN-WAIT-1
The application has requested the closing of the

connection.

FIN-WAIT-2 The other side has accepted the closing of the connection.

TIME-WAIT Waiting for retransmitted segments to die.

CLOSE-WAIT The server is waiting for the application to close.

LAST-ACK The server is waiting for the last acknowledgment.

Can use netstat command to see some TCP states

TCP © Dr. Ayman Abdel-Hamid, CC231 29

State Transition Diagram 4/4

TCP © Dr. Ayman Abdel-Hamid, CC231 30

Packet Exchange

Send 1-segment

request and receive 1-

segment reply

Piggybacking

feature

TCP © Dr. Ayman Abdel-Hamid, CC231 31

TIME_WAIT State
•The end that performs the active close goes through this state

•Duration spent in this state is twice the maximum segment life (2

MSL)

�MSL: maximum amount of time any given IP can live in the network

•Every TCP implementation must choose a value for MSL

�Recommended value is 2 minutes (traditionally used 30 seconds)

•TIME_WAIT state motives

�allow old duplicate segments to expire in the network (relate to connection

incarnation)

�TCP will not initiate a new incarnation of a connection that is in

TIME_WAIT state

�Implement TCP’s full-duplex connection termination reliably

�The end that performs the active close might have to resend the final

ACK

TCP © Dr. Ayman Abdel-Hamid, CC231 32

TCP Segment Format

TCP © Dr. Ayman Abdel-Hamid, CC231 33

TCP Header Fields 1/2

•Source Port and Destination Port

�Identify processes at ends of the connection

•Control bits

�URG urgent (urgent data present)

�ACK acknowledgment

�PSH push request

�Inform receiver TCP to send data to application ASAP

�RST reset the connection

�SYN synchronize sequence numbers

�FIN sender at end of byte stream

TCP © Dr. Ayman Abdel-Hamid, CC231 34

TCP Header Fields 2/2

•Sequence Number: position of the data in the sender’s byte stream

•Acknowledgment Number: position of the byte that the source

expects to receive next (valid if ACK bit set)

•Header Length: header size in 32-bit units. Value ranges from [5-15]

•Window: advertised window size in bytes

•Urgent

�defines end of urgent data (or “out-of-band”) data and start of normal data

�Added to sequence number (valid only if URG bit is set)

•Checksum: 16-bit CRC (Cyclic Redundancy Check) over header

and data

•Options: up to 40 bytes of options

