TCP

CC231

Introduction to Networks

Dr. Ayman A. Abdel-Hamud
CCIT - AASTMT

Transmission Control Protocol (TCP)

© Dr. Ayman Abdel-Hamid, CC231

Outline

*Transmission Control Protocol

TCP © Dr. Ayman Abdel-Hamid, CC231

Quality

of
service

TCP

Transport Layer -

Application layer
Gives services to

Transport layer

‘ Packetizing I ‘ Addressing I

Commection Reliability Congestion
control control
\Receives services from

‘ Network layer |

© Dr. Ayman Abdel-Hamid, CC231 3

Transport Layer 2»

Processes Processes
vee ‘ Node-to-node: Data link layer ‘ vee .
= Host-to-host: Network layer
,f - Process-to-process: Transport layer | \\

| I 7RG R — I \

:Node—to: Node-to : : Node-to :Node—to: \

| -node | -node | Node-to-node | -node | -node | \

™ s = i s <l \

| Host-to-host | \

< > \
Process-to-process \

>\

Process-to-process delivery

TCP © Dr. Ayman Abdel-Hamid, CC231 4

Transport Layer Addressing

Addresses

Data link layer = MAC address

*Network layer = IP address

*Transport layer = Port number (choose among multiple
processes running on destination host)

Daytime
client

=\

il

F |—|52f00|—| F‘

g

Daytime
server

— 13 H W

Transport laye rTranspoﬂ layer
Data | 13 [52,000 =>
<= 13 [52,000| Data

TCP

© Dr. Ayman Abdel-Hamid, CC231

Port Numbers
*Port numbers are 16-bit integers (0 = 65,535)

» Servers use well know ports, 0-1023 are privileged
» Clients use ephemeral (short-lived) ports

o [nternet Assigned Numbers Authority (IANA) maintains a list of
port number assignment

» Well-known ports (0-1023) => controlled and assigned by
TANA

»Registered ports (1024-49151) > IANA registers and lists
use of ports as a convenience (49151 1s 34 of 65536)

» Dynamic ports (49152-65535) = ephemeral ports

» For well-known port numbers, see /etc/services on a UNIX or
Linux machine

TCP © Dr. Ayman Abdel-Hamid, CC231 6

Socket Addressing

*Process-to-process delivery needs fwo identifiers
» P address and Port number

»Combination of IP address and port number is called a
socket address (a socket 1s a communication endpoint)

» Client socket address uniquely identifies client process
» Server socket address uniquely identifies server process
*Transport-layer protocol needs a pairof socket addresses
»Client socket address
»Server socket address
»For example, socket pair for a TCP connection is a 4-tuple
v'Local IP address, local port, and
v'foreign IP address, foreign port

TCP © Dr. Ayman Abdel-Hamid, CC231

Multiplexing and Demultiplexing

Multiplexing

Sender side may have

several processes that
need to send packets

(albeit only 1 transport- ¢ ¢ i ¢

layer protocol)
Demultiplexing

At receiver side, after
error checking and
header dropping,

Processes

gﬁ gﬁ

Processes
A A A A

\ Multiplexer / / Demultiplexer \

i

[P

transport-layer delivers

each message to
appropriate process

TCP

© Dr. Ayman Abdel-Hamid, CC231

%

!

IP

> J

Transmission Control Protocol i3

*TCP must perform typical transport layer functions:
»Segmentation > breaks message into packets
»End-to-end error control > since IP is an unreliable Service
»End-to-end flow control = to avoid buffer overflow
»Multiplexing and demultiplexing sessions

*TCP 1s [originally described in RFC 793, 1981]

»Reliable

» Connection-oriented > virtual circuit

» Stream-oriented = users exchange streams of data

»Full duplex = concurrent transfers can take place in both
directions

» Buffered - TCP accepts data and transmits when appropriate
(can be overridden with “push”)

TCP © Dr. Ayman Abdel-Hamid, CC231 9

Transmission Control Protocol 213

*Reliable
»requires ACK and performs retransmission

»If ACK not received, retransmit and wait a longer time for
ACK. After a number of retransmissions, will give up

»How long to wait for ACK? (dynamically compute RTT for
estimating how long to wait for ACKs, might be ms for LANs or

seconds for WANS)
RTT = a* old RTT + (1- @™ new RTT where & usually 90%

»Most common, Retransmission time = 2* RTT

» Acknowledgments can be “piggy-backed” on reverse direction
data packets or sent as separate packets

TCP © Dr. Ayman Abdel-Hamid, CC231 10

Transmission Control Protocol i3

*Sequence Numbers
» Associated with every byte that it sends

»To detect packet loss, reordering and duplicate removal

»Two fields are used sequence number and acknowledgment
number. Both refer to byte number and not segment number

» Sequence number for each segment is the number of the first
byte carried in that segment

» The ACK number denotes the number of the next byte that
this party expects to receive (cumulative)

v'If an ACK number is 5643 - received all bytes from beginning up to
5642

v'This acknowledges all previous bytes as received error-free

TCP © Dr. Ayman Abdel-Hamid, CC231 11

Transmission Control Protocol 413

*Sending and Receilving buffers

» Senders and receivers may not produce and consume data at
same speed

» 2 buffers for each direction (sending and receiving buffer)

Sending Process Receiving Process
Next byte Next byte =
to be sent to be received —
/ \
\ 1] i,
.“ .“‘ .“ Next byte
Next byte Ly Sending | > | JReceiving)l_| to deliver
to accept " Buffer .. " Buffer ..
Yeans% Yans¥%

Sending TCP Receiving TCP

TCP © Dr. Ayman Abdel-Hamid, CC231 12

Transmission Control Protocol s:s

*TCP uses a sliding window mechanism for flow control
eSender maintains 3 pointers for each connection
» Pointer to bytes sent and acknowledged
» Pointer to bytes sent, but not yet acknowledged
v' Sender window includes bytes sent but not acknowledged

» Pointer to bytes that cannot yet be sent

window size = 8
Byte: 34 56 718 9 10 11 12]13 14 15]16 17

<8 acked by receiver
<13 sent
<16 can be sent

TCP © Dr. Ayman Abdel-Hamid, CC231 13

Transmission Control Protocol «:13

Flow Control

»Tell peer exactly how many bytes it is willing to accept
(advertised window 2 sender can not overflow receiver buffer)
v’ Sender window includes bytes sent but not acknowledged
v’ Receiver window (number of empty locations in receiver buffer)

v'Receiver advertises window size in ACKs

»Sender window <= receiver window (flow control)

v'Sliding sender window (without a change in receiver’s advertised
window)

v'Expanding sender window (receiving process consumes data faster than
it receives =2 receiver window size increases)

v'Shrinking sender window (receiving process consumes data more
slowly than it receives = receiver window size reduces)

v'Closing sender window (receiver advertises a window of zero)

TCP © Dr. Ayman Abdel-Hamid, CC231 14

Transmission Control Protocol 713

eError Control

»Mechanisms for detecting corrupted segments, lost segments,
out-of-order segments, and duplicated segments
»Tools: checksum (corruption), ACK, and time-out (one time-
out counter per segment)

v Lost segment or corrupted segment are the same situation:

segment will be retransmitted after time-out (no NACK 1n
TCP)

v’ Duplicate segment (destination discards)

v’ Out-of-order segment (destination does not acknowledge,
until it receives all segments that precede it)

v Lost ACK (loss of an ACK is irrelevant, since ACK
mechanism 1S cumulative)

TCP © Dr. Ayman Abdel-Hamid, CC231 15

Transmission Control Protocol s:is

*Congestion Control

» TCP assumes the cause of a lost segment is due to congestion
in the network

> If the cause of the lost segment is congestion, retransmission of
the segment does not remove the problem, 1t actually aggravates
it

» The network needs to tell the sender to slow down (affects the
sender window size in TCP)

» Actual window size = Min (receiver window size, congestion
window size)
v'The congestion window is flow control imposed by the sender

v'The advertised window is flow control imposed by the receiver

TCP © Dr. Ayman Abdel-Hamid, CC231 16

Congestion Control .

eSlow start

» At start of connection, set congestion window size to
maximum segment size

»For each segment ACKed, increase congestion window size
by 1 maximum segment size until it reaches a threshold of one-

half allowable window size

»Exponential increase in size
v'Send 1 segment, receive 1 ACK, increase size to 2 segments
v'Send 2 segments, receive 2 ACKs, increase size to 4 segments

v'Send 4 segments, receives 4 ACKs, increase size to 8 segments

TCP Review © Dr. Ayman Abdel-Hamid, CS5984 Spring 2006 17

Congestion Control

eAdditive Increase (Congestion Avoidance phase)

» After size reaches threshold, size is increased one segment for each
ACK, even if ACK is for several segments (this continues as long as
ACKs arrive before time-outs, or congestion window reaches the
receiver window value)

eMultiplicative Decrease
»If a time-out occurs, threshold set to one-half of last congestion
window size, and congestion window size starts from 1 (return to
slow start)
» Threshold reduced to one-half current congestion window size
every time a time-out occurs (exponential reduction)
»Exponential growth stops when the threshold is hit
» Afterwards, successful transmissions grow congestion window
linearly

*Such congestion control often referred to as TCP Tahoe

TCP Review © Dr. Ayman Abdel-Hamid, CS5984 Spring 2006 18

Transmission Control Protocol i3

*Congestion Control

—— Soriest

BRRBBBSER

—_
NN o

congestion window size in Kbytes

oS A~ 0

0 2 4 6 8 1012 14 16 8 A 2 24 6
Transrission nurber

TCP © Dr. Ayman Abdel-Hamid, CC231

TCP Variants ..

*TCP Tahoe (first implemented in 4.3 BSD, 1988)
» Slow start + Congestion avoidance and fast retransmit
» Fast Retransmit

v'Triggers the transmission of a dropped segment if three
dup ACKs for a segment are received before the occurrence
of the segment's timeout

v'TCP required to immediately generate a dup ACK if an
out-of-order segment 1s received (on receiving a dup ACK,
cant tell if the reason 1s a reorder of segments or a lost
segment, hence the wait to receive a number of dup ACKs)

v'Fast Retransmit was incorrectly followed by slow start

TCP Review © Dr. Ayman Abdel-Hamid, CS5984 Spring 2006 20

Transmission Control Protocol 133

eFull-Duplex
»send and receive data in both directions.

» Keep sequence numbers and window sizes for each direction
of data flow

TCP © Dr. Ayman Abdel-Hamid, CC231 21

TCP Connection Establishment

client Server
BT | socket, bind, 1isten
socket
accept (block
connect (blocks) SYNT POOES) s open
(active open) | B
SyN K, ack J+]
aonnect rehms ﬁ———'_'—,_‘—_‘
\%\—Fr
dceept retums
" read (blocks)

Figure 2.2 TCP three-way handshake

SYN: Synchronize
ACK: Acknowledge

TCP © Dr. Ayman Abdel-Hamid, CC231 22

TCP Options

Each SYN can contain TCP options
*MSS Option

»maximum segment = the maximum amount of data it is
willing to accept in each TCP segment

»Sending TCP uses receiver’s MSS as its MSS

*Window Scale Option

»maximum window is 65,535 bytes (corresponding field in TCP
header occupies 16 bits)

»1it can be scaled (left-shifted) by 0-14 bits providing a
maximum of 65,535 * 214 bytes (one gigabyte)

» Option needed for high-speed connections or long delay paths

»>In this case, the other side must send the option with its
SYN

TCP © Dr. Ayman Abdel-Hamid, CC231 23

TCP MSS and output

*TCP MSS is = (interface MTU — fixed sizes of IP and TCP headers (20 bytes))
»MSS on an Ethernet (IPv4)= 1460 bytes (1500 (why?) - 40)

*Successful return from write implies you can reuse application buffer

ticats .
appilicaton " J_ application buffer {any size) || :

socket send buffer (80_sNDEUF) J

1 MES-sized TCP segments

MSS normally = MTT — 40 (AP vd) or MTLI — 60 {IPve)

L ®]

| output queue |
datalini r :

j MTU-sized IPv4 o1 TPvE packets

Figure 213 Steps and buaffers involved when application swrites -En a TCF socket

TCP © Dr. Ayman Abdel-Hamid, CC231 24

TCP Connection Termination

chent servar

Cclose. FIN
{active close) \\M_\‘b {passive close)

al‘.:k M+] read ehurms

r—

. —
. FIN N — ¢lose

ol

w\

Figure 23 Packets exchanged when 2 TCP connection 15 closed.

*FIN: Finish
*Step 1 can be sent with data
*Steps 2 and 3 can be combined into 1 segment

TCP © Dr. Ayman Abdel-Hamid, CC231

25

Typical TCP
states visited
by a TCP
client

TCP

State Transition Diagram ..

walt 30 seconds

CLOSED

TIME_WAIT

A

receive FIM
send ACK,

FIN_WAIT 2

receive ACK
send nothing

© Dr. Ayman Abdel-Hamid, CC231

client application
initiates a TCP connection

send SN

SYN_SENT

receie oYM & ACK
send ACK,

Y

ESTABLISHED

FIN_WAIT 1

client application
initiates ¢close connection

send FIM

26

Typical
TCP
states
visited by
a TCP
server

TCP

State Transition Diagram ..

receive ACK
send nothing

CLOSED

LAST_ACK

A

send FIM

CLOSE_WAIT

receive FIN
send ACK

server application
creates a listen socket

LISTEN

receive SYMN
send SYN & ACK

L4

SYN_RCVD

ESTABLISHED

© Dr. Ayman Abdel-Hamid, CC231

receive ACK
send nothing

27

State Transition Diagram .

State Description
CLOSED There is no connection.
LISTEN The server is waiting for calls from the client.
SYN-SENT A connection request is sent; waiting for acknowledgment.
SYN-RCVD A connection request is received.
ESTABLISHED | Connection is established.
FIN-WAIT-1 The application has requested the closing of the

connection.

FIN-WAIT-2 The other side has accepted the closing of the connection.
TIME-WAIT Waiting for retransmitted segments to die.
CLOSE-WAIT | The server is waiting for the application to close.
LAST-ACK The server is waiting for the last acknowledgment.

Can use netstat command to see some TCP states

TCP

© Dr. Ayman Abdel-Hamid, CC231 28

cirypeot
send: | RST L LISTEMN

State Transition Diagram ..

Startimg podnt
" CLOSED)

4 L]

appl: passive open
send: <nothing>

Passive open

appl: close

-
e recw: SYWMN T RO Yy
Ch" N_RCVD l'- send: SY N, ACK SYIN_SENT vy
) sirmultaneois open active open
.
.’.—':-_;:.'5:_';.._—{
'::?r‘)fr-.
)4;:}‘

appl: | close
send: | FIN

STABLISHED
data transfer state

—— —
send: ol

simultaneous close
CLOSING }

recw: FIN
send: ACK L

(FIN WAIT 1

passive close

recw: | ACK
send: | <mnothing-

recw: | ACK
send: | <nothing =

recv: FIN

¥
(_FIN WAIT 2} TIME_WAIT)

aOr Tinmecut

A
2MSE tirmeours

artive rlnee

send: ACK

i

© Dr. Ayman Abdel-Hamid, CC231

29

Packet Exchange

client

sochkeal
conneckt (blocks)
{active open) SYM SENT

ESTABLISHED

connesn returmns

<client forms request>

wrire
raad (blocks)

raad refurms
. cilo=a
factive close) FIN_WATIT_1

FIM_WAIT 2

TME_WATIT

Figure 2.5 Packet exchange for TCP connechion.

TCP

Smlrmglw

ase = 1024

kR]

data (requesi)

data '[.UE-P!Y}

e = ol tequest

—————~ckefrepty]

__;m_m_-_-ﬁ_fL__'—_ﬁ-
.qrrfffdﬂ#ﬂjfiiitk"rr”Jud‘d
-—r"'J;_—FFEEjEi_FFr"‘—_Frr.

ack Wi

=

© Dr. Ayman Abdel-Hamid, CC231

sServer .

saocker, bind, listen
LISTEN (passive open)

ace=apk (blocks)

SYN_RCVD Piggybacking
feature

ESTABLISHED

asaept returms

raad {(blocks)

raad rehirms
CEZEFDEN PrOCEssSEs requesis

write
read {Blocks)

CLOSE_WAIT {passive close
read rerrns O

close)
LAST_ACK
CLOSED Qo 11 o

c Send 1-segment
request and receive 1-
segment reply

R

30

TIME WAIT State

e The end that performs the active close goes through this state

eDuration spent in this state is twice the maximum segment life (2
MSL)

»MSL: maximum amount of time any given IP can live in the network

*Every TCP implementation must choose a value for MSL

»Recommended value is 2 minutes (traditionally used 30 seconds)

*TIME_WAIT state motives

»allow old duplicate segments to expire in the network (relate to connection
Incarnation)

v'TCP will not initiate a new incarnation of a connection that is in
TIME_ WAIT state

» Implement TCP’s full-duplex connection termination reliably

v'The end that performs the active close might have to resend the final

TCP ACK © Dr. Ayman Abdel-Hamid, CC231 31

TCP Segment Format

TCP Header
() 15 16 31
16-bit source port number 16-bit destination port number !
32-bit sequence number
32-bit acknowledgment number 200 bytes
it n U ."l'"L P H S F
Abit header) - reserved RIC|SIS|Y]|] 16-bit window size
IEIlgTh {'['J h]TS} CIKIHITININ
16-bit TCP checksum 16-bit urgent pointer Y

/ options (if any) J
/ data (if any) J

TCP © Dr. Ayman Abdel-Hamid, CC231 32

TCP Header Fields -

eSource Port and Destination Port

»Identify processes at ends of the connection
*Control bits

»URG urgent (urgent data present)

» ACK acknowledgment

»PSH push request
v Inform receiver TCP to send data to application ASAP

» RST reset the connection
»SYN synchronize sequence numbers

»FIN sender at end of byte stream

TCP © Dr. Ayman Abdel-Hamid, CC231

33

TCP Header Fields 2

*Sequence Number: position of the data in the sender’s byte stream

*Acknowledgment Number: position of the byte that the source
expects to recerve next (valid if ACK bit set)

eHeader Length: header size in 32-bit units. Value ranges from [5-15]
*Window: advertised window size in bytes

*Urgent
v'defines end of urgent data (or “out-of-band”) data and start of normal data

v'Added to sequence number (valid only if URG bit is set)

*Checksum: 16-bit CRC (Cyclic Redundancy Check) over header
and data

*Options: up to 40 bytes of options

TCP © Dr. Ayman Abdel-Hamid, CC231 34

