Networking Applications

Dr. Ayman A. Abdel-Hamid College of Computing and Information Technology Arab Academy for Science & Technology and Maritime Transport

Mobile Web

© Dr. Ayman Abdel-Hamid, Networking Applications

Outline

Mobile Web

- •HTTP
- •HTTP 1.0 problems
- •Approaches to help wireless access
- •HTTP 1.1 enhancements
- •System Architecture for Web Access from Mobile Clients
- •Internet Services for Mobile Wireless Devices
 - ► WAP 1.x and WAP 2.0
 - ≽i-mode
- Based on
 - ➢ Jochen Schiller, *Mobile Communications*, 2nd Ed, Addison-Wesley, 2003, Chapter 10: "Support for Mobility"

HTTP

•HTTP (Hypertext Transfer Protocol) is a stateless, lightweight, application level protocol for data transfers between servers and clients

- •First version HTTP 1.0 (1996), HTTP 1.1 (1999) is the current standard
- •HTTP transaction consists of an HTTP request issued by a client followed by an HTTP response from a server
- •HTTP is stateless \rightarrow all HTTP transactions are independent
- •HTTP assumes a reliable underlying protocol (TCP)
- •HTTP 1.0 establishes a new connection for each request
- •HTTP 1.1 keeps connection active for multiple requests

HTTP (especially 1.0) Problems 1/2

•Bandwidth and delay

- >Not designed for low bandwidth/high delay connections
- >HTTP protocol headers quite large and redundant (stateless)
- >Headers are readable for humans and transferred in plain ASCII
- >Content is transferred uncompressed
- ➤A single TCP connection for every item in a web page (TCP does not leave slow start phase)
- ≻Need for DNS look-up (potential delay increase)

HTTP (especially 1.0) Problems 2/2

•Caching

- >Important in supporting (partially) disconnected web browsers
- Caches can be maintained locally (client-based) or for a whole company or a university
- Caching can be disabled by content-providers
 - ✓ Need for realistic feedback
 - ✓ Pages contain dynamic objects
- Customization stored in cookies
- Mechanism of accessing web servers might change due to change of access points
- Security mechanisms might inhibit caching

Approaches to Help Wireless Access

- •Image scaling
- •Content transformation
- •Content extraction (headlines and keywords)
 - ≻Give the user the option to download the full page based on some keywords or headlines
 - ≻Could generate an automatic abstract for some page (semantic compression)
- •Special languages and protocols
 - ≻Replace HTML and HTTP with other languages and protocols better adapted to wireless environment
 - ➢ Ideas integrated into Wireless Application Protocol (WAP)
 - Enhancements integrated into the server or into a gateway between fixed and mobile network (application gateways)

HTTP 1.1 Enhancements

•Connection re-use

➢ persistent connections

•Caching enhancements

 \succ To fetch most up-to-date version of an item, that item can be revalidated with origin server

Can determine if two different URLs map to same content

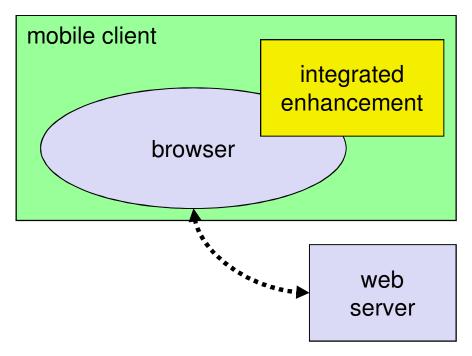
➤Content can flagged to be cacheable in private caches only or anywhere

•Bandwidth optimization

➤negotiation of compression parameters and compression style (hop-by-hop or end-to-end)

➢partial transmission of objects

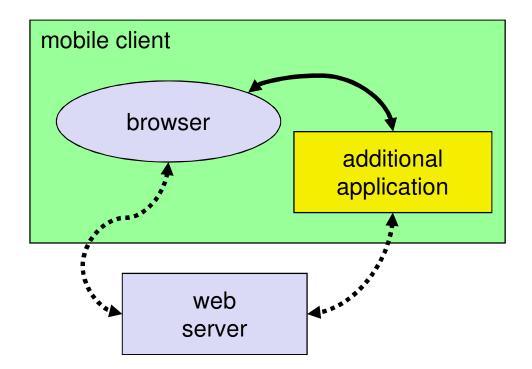
Mobile Web


System Architecture for Web Access 1/5

•Integration of caching on web browsers

≻Offline use

≻No automatic pre-fetching

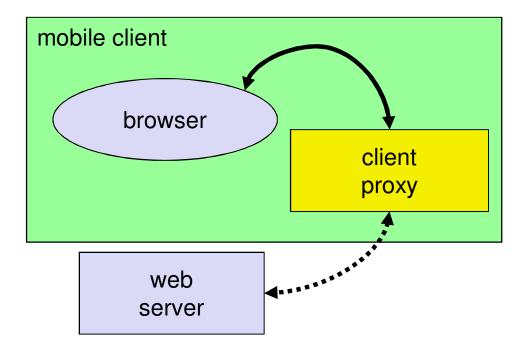

Standard on today's browsers

© Dr. Ayman Abdel-Hamid, Networking Applications

System Architecture for Web Access 2/5

•Can use a companion application for the browser that supports pre-fetching of content, caching, and disconnected service (not transparent to browser and 2 ways exist for accessing content)

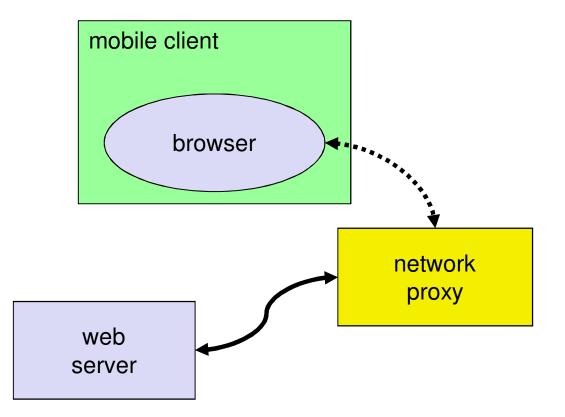
System Architecture for Web Access 3/5


•Use a transparent client proxy

➤acts as server for browser and client for web server

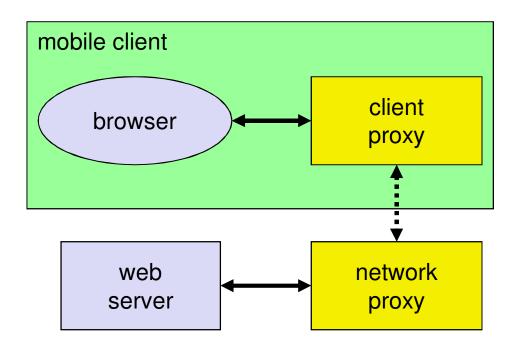
- ➤Can apply pre-fetching strategies
 - ✓ All pages, the current pages point to

✓ All pages including those the pre-fetched pages point to (up to a certain limit)


✓ Pages but no pictures

System Architecture for Web Access 4/5

•Use a network proxy

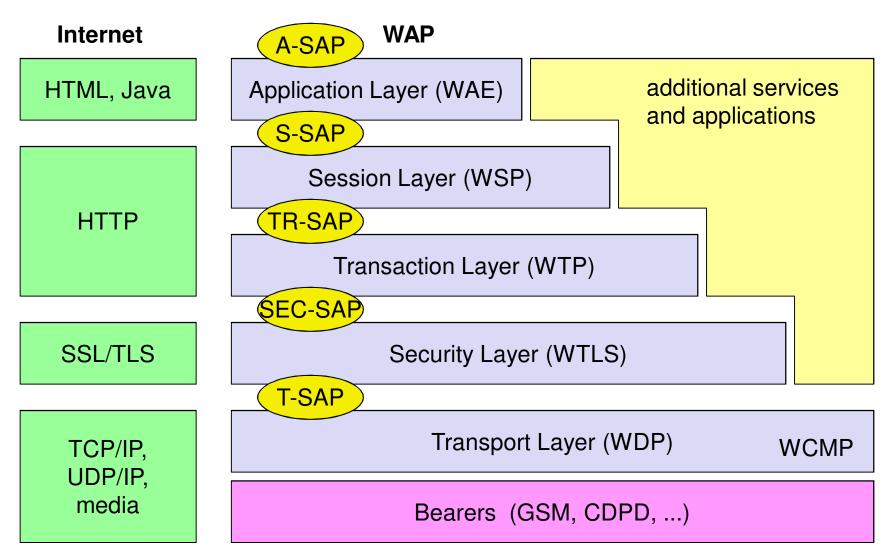

- ➤ content transformation
- ▶ pre-fetching
- ≻caching

System Architecture for Web Access 5/5

•Integrate the use of a client proxy and network proxy

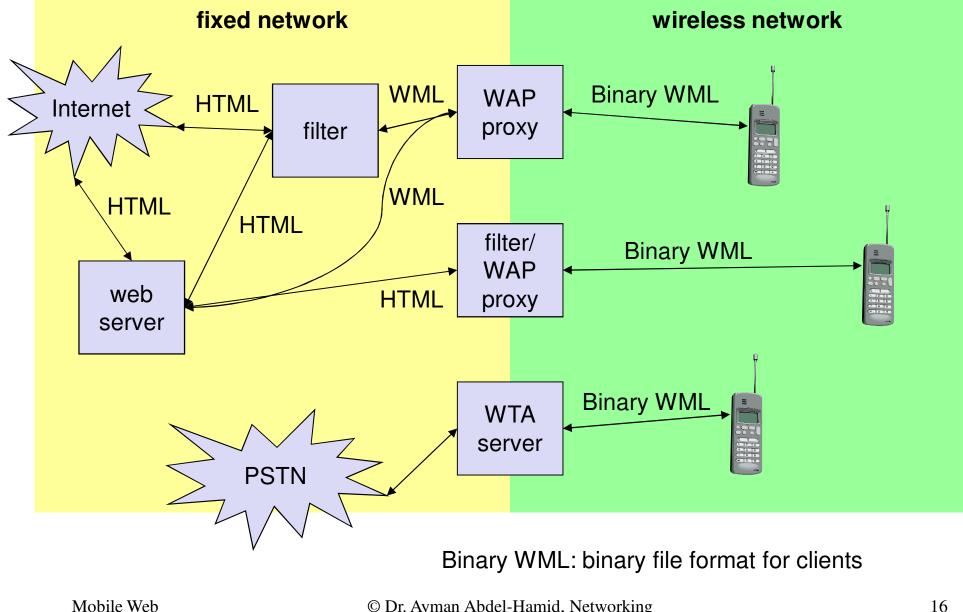
•Better cooperation between client and network proxies in prefetching and caching

Wireless Application Protocol (WAP)


- Goals
 - deliver Internet content and enhanced services to mobile devices and users (mobile phones, PDAs)
 - > independence from wireless network standards
 - > open for everyone to participate, protocol specifications will be proposed to standardization bodies
 - > applications should scale well beyond current transport media and device types and should also be applicable to future developments
- Forum
 - > was: WAP Forum (<u>www.wapforum.org</u>)

> now: Open Mobile Alliance (www.openmobilealliance.org)

WAP Scope of Standardization


- Browser
 - "micro browser", similar to existing, well-known browsers in the Internet
- Script language
 - > similar to Java script, adapted to the mobile environment
- WTA/WTAI
 - Wireless Telephony Application (Interface): access to all telephone functions
- Content formats
 - e.g., business cards (vCard), calendar events (vCalender)
- Protocol layers
 - > transport layer, security layer, session layer etc.

WAP 1.x Architecture

WAE comprises WML (Wireless Markup Language), WML Script, WTAI etc.

WAP Network Elements

© Dr. Ayman Abdel-Hamid, Networking Applications

WAP Protocols 1/6

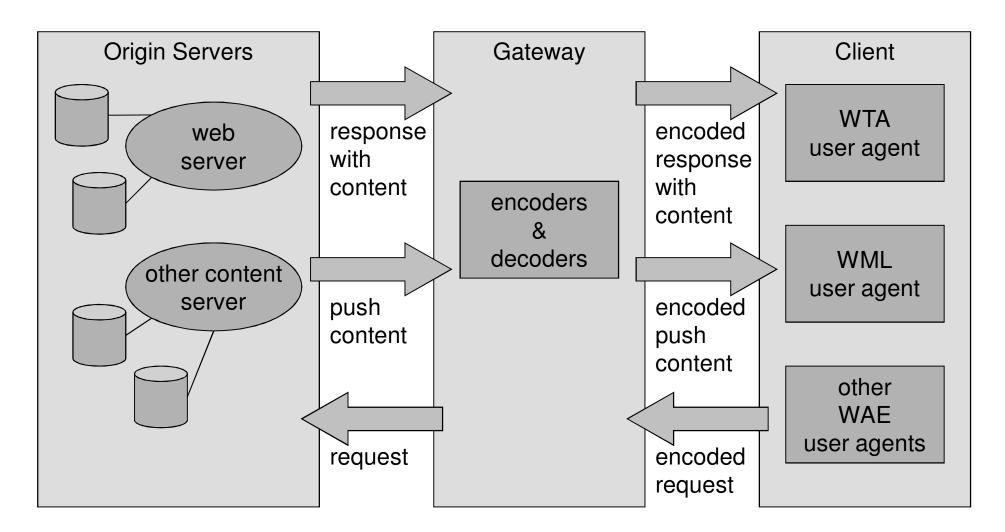
- WDP (Wireless Datagram Protocol)
 - Common interface for higher WAP layers independent of network technology
- WCMP (Wireless Control Message Protocol)
 ➢ Control/error reporting → similar to ICMP in TCP/IP
- WTLS (Wireless Transport Layer Security)
 - Based on TLS (Transport Layer Security), formerly SSL (Secure Sockets Layer)
 - > Optimized for low-bandwidth communication channels
 - Provides authentication, privacy, data integrity, and protection against DOS attacks

WAP Protocols 2/6

- WTP (Wireless Transaction Protocol)
 - > different transaction services, offloads applications
 - ✓ application can select reliability, efficiency
 - > support of different communication scenarios
 - ✓ *class 0:* unreliable message transfer (push service)
 - ✓ class 1: reliable message transfer without result message (reliable push service)
 - ✓ *class 2:* reliable message transfer with exactly one reliable result message (typical web browsing)
 - Iow memory requirements, suited to simple devices (< 10 Kbytes)

WAP Protocols 3/6

- WTP (Wireless Transaction Protocol)
 - > No explicit connection setup or tear-down is required
 - ➢ Reliability
 - ✓ Unique transaction identifiers (TID)
 - ✓Acknowledgements
 - ✓ Selective retransmission
 - ✓ Duplicate removal
 - > Optional: concatenation & separation of messages
 - > Optional: segmentation & reassembly of messages
 - Asynchronous transactions
 - Transaction abort, error handling

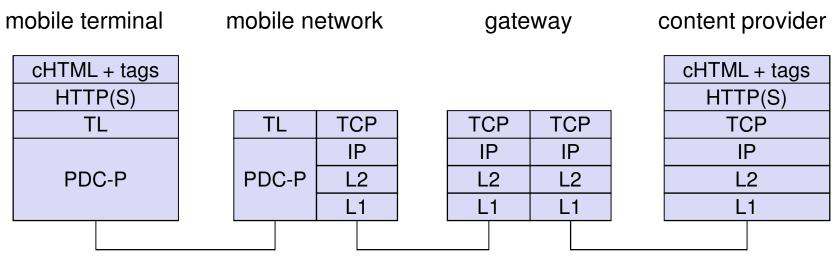

WAP Protocols 4/6

- WSP (Wireless Session Protocol)
 - > Operates on top of WDP or WTP
 - Provides session management, capability negotiation, and content encoding
 - WSP/B (WSP/Browsing) better suited for browsing-type applications
 - ✓ HTTP1.1 functionality
 - ✓ Exchange of session headers
 - ✓ Push and Pull data transfer
 - ✓ Asynchronous requests are optional
 - Can use WSP/B over WTP (classes 0,1, and 2)
 - Can use WSP/B over WDP or over WTLS if security is required

WAP Protocols 5/6

- WAE (Wireless Application Environment)
 - Create a general-purpose application environment based on technologies of WWW
 - > Components
 - ✓ architecture: application model, browser, gateway, server
 - ✓ WML: XML-Syntax, based on card stacks, variables, ...
 - ✓ WMLScript: procedural, loops, conditions, ... (similar to JavaScript)
 - ✓ WTA: telephone services, such as call control, text messages, phone book, ... (from WML/WMLScript)
 - ✓ content formats: vCard, vCalendar, Wireless Bitmap, WML, ...

WAP Protocols 6/6



WAE logical Model

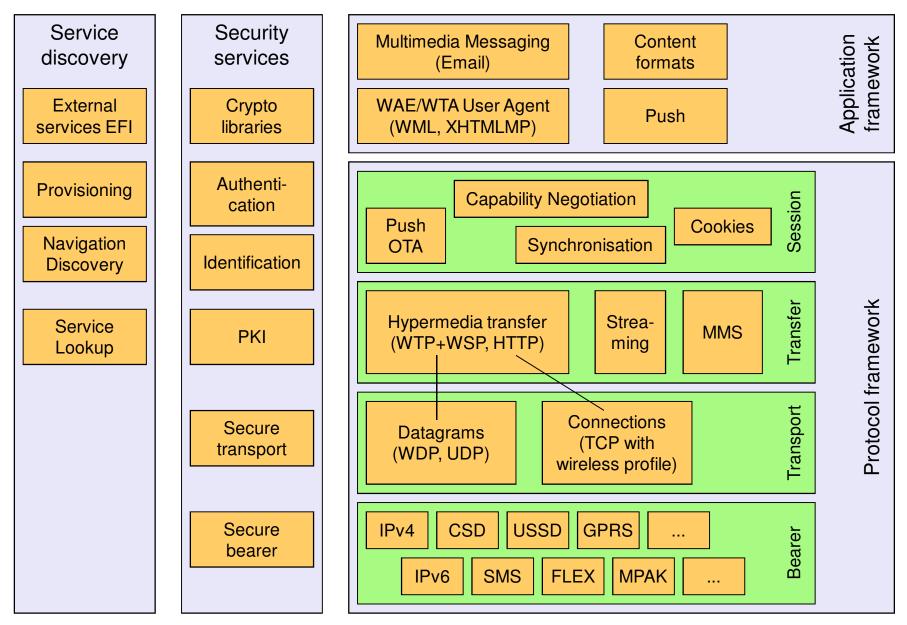
© Dr. Ayman Abdel-Hamid, Networking Applications

i-mode 1/2

- Introduced in Japan by NTT DoCoMo in 1999
- Offers email, web access, and picture exchange
- More than 45 million users in Japan and 5 millions worldwide (June 2005)
- Technology
 - ➢ Packet oriented (PDC-P)
 - Compact HTML plus proprietary tags, special transport layer (Stop/go, ARQ, push, connection oriented)

Mobile Web

© Dr. Ayman Abdel-Hamid, Networking Applications


i-mode 2/2

- Uses a packet-oriented bearer
- WAP started with connection-oriented bearers
 - > Poor user experience
 - Connection permanently open to support real interactive web browsing
 - New connection had to be established each time content was loaded
- Misconception: complete WAP concept is a failure

WAP 2.0 1/2

- Published in July 2001
- Roughly sum of WAP1.x, i-mode, Internet protocols, and
- Support WAP 1.x, but additionally integrates IP, TCP (with a wireless profile), TLS, and HTTP (wireless profiled)
- WAP 2.0 browsers support WML as well as XHTML with a mobile profiler
- Consists of a protocol framework and an application framework
- Protocol framework consists of
 - Bearer services
 - Transport services (WDP or UDP, TCP with a wireless profile)
 - Transfer services (HTTP wireless profiled, MMS)
 - Session services

WAP 2.0 2/2

© Dr. Ayman Abdel-Hamid, Networking

Applications