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Abstract—Though a variety of cloud storage services have
been offered recently, they have not yet provided users with
transparent and cost-effective personal data storage. Services like
Google Docs offer easy file access and sharing, but tie storage
with internal data formats and specific applications. Meanwhile,
services like Dropbox offer general-purpose storage. Yet they
have not been widely utilized, partly due to their fee-charging
nature and long-term service availability concerns.

Web-based email services, on the other hand, have been offer-
ing growing email storage capacity, reliable service, and powerful
search capability, making them appealing as storage resources. In
this paper, we examine the efficacy of leveraging web-based email
services to build a personal storage cloud. We present EMFS,
which aggregates back-end storage by establishing a RAID-like
system on top of virtual email disks formed by email accounts.
In particular, by replicating data across accounts from different
service providers, highly available storage services can be con-
structed based on already reliable, cloud-based email storage.
This paper discusses the design and implementation of EMFS,
focusing on unique challenges and opportunities associated with
utilizing email services for file transfer and storage, such as email-
based data organization, metadata format and management,
and handling provider-imposed anti-spam usage restrictions. We
evaluated EMFS extensively with multiple benchmarks, and
compared its performance with NFS, AFS, and a non-free cloud
storage service built upon Amazon S3. Our results indicate that
while EMFS cannot match the performance of highly optimized
distributed file systems with dedicated servers, it performs quite
closely to the commercial cloud storage solution.

I. INTRODUCTION

Recently, a variety of cloud storage services have emerged
and provided different levels of storage abstractions. Web
applications, such as Google Docs and Adobe Buzzword,
offers not only various applications but also online storage
to support file upload and backup. However, they tightly
bind cloud storage with specific applications, and have to
convert existing documents into certain internal formats before
storing them. Besides potential compatibility issues, such
storage services often have limited functionalities compared
with general-purpose file systems. Migration between different
service providers also presents a challenge.

Other commercial solutions do provide a file system inter-
face for the back-end cloud storage. Representative examples
include Jungle Disk [1], Dropbox [2] and Windows Live
SkyDrive. These services allow users to access the cloud by
mounting a virtual disk on the client machines. Unfortunately,
these services have not been widely utilized. This might be
partly attributed to their fee-charging nature. Another reason is
that users tend to have long-term service availability concerns.
Should a company go down, a user’s data may become unavail-
able. These services typically solely rely on one underlying

cloud, and cannot yet guarantee data reliability/availability. For
example, in our experiments using Jungle Disk in a period of
two weeks, even as a paid user, we have twice encountered
service interruptions.

Meanwhile, many users today have been explicitly or im-
plicitly using web-based email services as a portable stor-
age/backup tool. There are several reasons that web-based
email services might offer an appealing solution to personal
storage. First, the capacity of a single email account has
increased dramatically in recent years, ranging from several
GB to even unlimited storage. Considering that a single user
can easily own multiple accounts from different providers,
the aggregated storage creates a sizable space for personal
data backup and processing. Second, many email services are
provided by reliable and reputable providers, such as Google
and Yahoo. Email services, even for uncharged accounts, are
rather stable and long-lasting, offering additional merits for as
personal data repositories. Though email services are not im-
mune to technical failures, as users can easily obtain multiple
accounts from different providers, replication techniques can
be more naturally adopted for better reliability.

Based on the above observation, we present EMFS, an
email-based personal cloud storage system. While the design
of EMFS shares many common challenges and solutions as
existing distributed file systems, we focus on email-specific
issues and opportunities. For example, email protocols are not
optimized for synchronous data transfer, creating obstacles
for fast interactive personal data usage. Also, email service
providers often impose restrictions on the frequency of emails,
making it difficult to provide reliable file access. Mean-
while, email services also offer functionalities not available
in traditional disks. For instance, email protocols like IMAP
support quite flexible content-based email retrieval, which
can be leveraged to simplify metadata design. Further, email
services are inherently append-only, allowing us to leverage
log-structured file system techniques. Our design must take
such challenges and opportunities into consideration.

We do recognize that though online email services are often
free of charge to users, they are not really free. The access
to a large amount of user’s personal data is a great asset
to email service providers, for purposes such as personalized
advertising. A personal storage system leveraging online email
service infrastructures would also benefit service providers as
it extends their access to valuable customer data in terms
of both volumes and variety. Note that our approach does
not cause more privacy concerns than existing online email
services do.
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Our major contributions are summarized as follows:
• We propose EMFS, a personal cloud storage solution

based on online email services (Section II). While this
idea has been exploited previously [3], [4], [5], EMFS is
novel in that it views email accounts as virtual disks and
employs RAID-like approaches for space aggregation,
data striping, and data replication.

• We examined the feasibility of using email transfer
protocols for general-purpose file access and providing
traditional file system interfaces. In doing so, we ad-
dressed many unique design challenges and issues, such
as anti-spam usage restrictions, metadata and file data
organization, and data placement (Sections III and IV).

• We implemented a proof-of-concept prototype of EMFS
via FUSE [6], and evaluated it with comprehensive ex-
periments, using two widely used file system benchmarks
and a synthetic personal file access workloads. Perfor-
mance comparison is conducted with NFS, AFS, and
Jungle Disk, a charging cloud storage service (Section V).

II. EMFS OVERVIEW

A. Target Workload and Assumptions

EMFS provides an email-based cloud storage, where a user
construct his/her personal storage space from web-based email
accounts for easy, portable accesses. We focus on dealing with
the typical personal workload [7], including reading, editing,
and backing up documents such as Word, pdf, etc. While
media files such as pictures and music are often candidates of
uploading in today’s home computing setting, gigabyte level
files such as large movies are less common contents for email-
based portable storage. Therefore our design targets file sizes
ranging from several KBs to tens of MBs.

EMFS targets personal file accesses, and is designed to be
accessed by a single user, with the assumption that this user
will not share storage with others or allow concurrent access
to his/her data. This is also due to the consideration that EMFS
does not have a full fledged server to handle issues such as
real time synchronization, conflict detection and resolution,
etc. These issues cannot be solved utilizing just a client without
severely hampering performance. These assumptions simplify
the design of EMFS and this paper’s discussion focuses more
on email-specific challenges and opportunities.

B. EMFS System Architecture

Figure 1 illustrates the EMFS architecture, composed of
two layers: the EMFS client and the email storage cloud.
This email storage cloud provides storage through email
accounts from providers such as Google, Gawab [8], and AOL.
The EMFS client presents an approximate-POSIX file system
interface based on FUSE [6] for the email storage cloud. Note
that the EMFS package does not have any server side code. It
utilizes existing email services and standard email protocols
such as SMTP and IMAP to store and retrieve data.

Email services: Email services are shown at the bottom of
Figure 1. EMFS ultimately stores its data in emails provided
by email service providers such as Google, Gawab and AOL.

Email File System Interface through FUSE
Client

Email Mapping ServiceMemory Cache

E il Cl d St I t f

Local Cache

Email Cloud Storage Interface

i i i i

…replication replication replication replication

striping striping

…replication replication replication replication

Email Storage Cloud

…

Email Services

Fig. 1. EMFS design overview

These email services usually run their own massive data
centers. EMFS builds a reliable personal email storage cloud
on top of such existing infrastructure.

Email storage cloud: This is a logical component in EMFS,
where we treat email accounts as virtual disks. By striping and
replicating data across these “email disks”, especially accounts
with different service providers, we receive benefit in several
aspects: performance, reliability, and capacity.

Client: At the client side, EMFS presents an approximate-
POSIX file system interface via FUSE [6], which enables
existing applications to run on top of EMFS without any mod-
ifications. Two layers of cache, a local disk cache and a mem-
ory cache, are used to speed up accesses. An email mapping
component performs the translation between files/directories
and emails. It also carries out storage management tasks, such
as data placement in striping and replication. The EMFS client
is implemented in around 3000 lines of Python code. The rest
of the paper discusses in more details its design issues.

III. DATA ORGANIZATION AND ACCESS

EMFS shares the design goals and challenges of typical
distributed file systems. In this paper, we focus on unique
challenges presented by email-based file system construction.

EMFS is built on top of email services provided by third-
party email service providers. Data and metadata are stored
as contents of emails, either as attachments or as part of the
body of the emails. In EMFS, there are two types of emails,
metadata emails and data emails. As their names indicate, a
metadata email stores metadata for files and directories, and
a data email is used to stored file data. These emails are sent
to and received from email servers through standard email
protocols such as IMAP and SMTP.
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EMFS utilizes a special property of email services: the
server-side search feature. Most major metadata and data
operations require EMFS to search for and retrieve specific
emails. This search and retrieval is carried out using IMAP
commands. For example, when a file open call is invoked,
EMFS searches for the required emails, including metadata
emails, on the server using certain unique identifiers (to be
discussed in the following sections). Once the server confirms
that the requested emails exist, EMFS can retrieve them to the
local machine. Deletions are a bit cheaper and are completely
server-side operations. The emails to be deleted are searched
in the same fashion as above. Once found, IMAP commands
are sent to the server to authorize their deletion.

A. File Organization

uuid+ version

<dir id=‘uuid’ name=‘desktop’ status=‘0’… />
<dir id=‘uuid’ name=‘temp’ status=‘0’ …  />

Subject

p
…
<file id=‘uuid’ name=‘foo.py’ status=‘0’ blockSize=‘128KB’ …>

<block bid=‘0’ version=‘1’ raidIndex=‘0’ status=‘0’ size=‘128KB’ />
Body

<block bid=‘1’ version=‘2’ raidIndex=‘1’ status=‘0’ size=‘128KB’ />
…

</file>
<file …>…</file>
…

Fig. 2. Sample metadata email structure

Metadata: Metadata operations make up as much as half of
typical file system workloads [9]. Considering EMFS’s target
workload – personal file editing, processing, and storage – and
the email access latency, it is desired to reduce the number
of metadata emails. Hence one metadata email is created for
each directory, which contains the metadata entries for all
subdirectories and files directly under it.

Figure 2 illustrates a typical metadata email, which stores
metadata in XML. Each file/directory is assigned a unique ID
(in the form of a version 3 UUID [10]). and a version number.
The version number in EMFS serves three purposes. First,
email storage is similar to log structured file systems [11],
where all updates are appended. A version number helps
with locating the emails containing the current data. The root
directory has a special ID, and the latest root directory email
in the server contains the up-to-date root metadata, which
can be located by a email search supported by email servers.
Secondly, it allows for consistency check and recovery from
failures (to be discussed later). Earlier versions of metadata,
available on the email servers (unless voluntarily deleted), can
be used to construct a “snapshot” of the file system at various
times of its lifetime. Such metadata snapshotting would be
useful, among other things, to address consistency issues when
failures occur [12]. Finally, though not implemented in this
prototype, a versioning file system can be built rather easily
on EMFS using these version numbers. The above usages of
version number are further facilitated by the strong search
features of today’s email services. Note that the latest metadata
email for a directory is retrieved using email search (which

retrieves the latest email using given search criteria )and not
by using version numbers. Thus, the metadata entry for a
directory in its parent metadata email does not include a
version field, which avoids the problem of cascading updates
when a file or directory is modified. However, each directory
carries and updates its own version number in its own metadata
email, without propagating it to the parent directory’s metadata
email. When a full versioning system is needed, email search
will be able to search the email subjects and bodies of emails
simultaneously to locate a certain version of metadata.

The body of the email contains the metadata entries for all
the subdirectories and files under this directory. There are three
types of entries:

• <dir> entry contains attributes for a directory, such as
its ID, directory name, and status.

• <file> entry contains attributes for a file, among which
the most important ones are ID, name, status, block size,
and file size. Each file entry will also contain one or more
<block> entries, as described below.

• <block> entry describes a single block in a file, con-
taining attributes such as the block index, block version
number, RAID index, status, and data size. A directory
metadata email contains the block entries for all the
blocks of a file in that directory. This allows quick
location of the data of a file. More details regarding the
block settings will be discussed in Section IV.

The metadata organization in EMFS is similar to that of
the Unix file system in the sense that it also decouples
inode numbers and names. By separating ID numbers and
file/directory names, metadata operations such as renaming
becomes more efficient, as only the parent directory’s meta-
data email needs to be updated. It is significantly different,
however, in that EMFS combines the metadata contents of
files and directories under a common directory in one single
metadata email, rather than storing such data separately within
a separate email (inode) for each of them. This greatly reduces
the number of metadata message retrievals, and receives more
benefit from local metadata caching. With typical personal file
system image size and composition [13], and the mail body
size allowed by today’s web-based email systems, we do not
expect to be concerned with the space limit problem, as each
metadata entry averages around 70 bytes. This design choice is
further supported by the fact that email send/receive efficiency
is low with small messages, as shown in Section IV-A.

One drawback of this design is that apparently, any change
to the metadata of a file/directory causes the resending of the
parent directory’s metadata email. However, considering the
small sizes of typical metadata emails, the latency is tolerable
in our experience.

Another potential problem with the above design is the
hierarchical lookup overhead over emails, as we need to go
through a sequence of metadata emails along the path of a
certain file/directory when we first retrieve it. EMFS’s dumb
server handicaps the use of a path based lookup as rename
or move operations will prove to be extremely expensive
due to cascading emails. To this end, EMFS explores two
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optimizations.
First, we experiment with a rather conservative metadata

prefetching policy, which prefetches metadata for directories
directly under the current directory.

Second, we also evaluate the effectiveness of a client-
side global lookup table (GLT), which performs translation
between a given full path of a file or directory and its
unique identifier within EMFS. Besides server-side search, this
approach leverages another unique feature of email services:
custom email flags. Entries are added to the table upon creation
of the corresponding file or directory. A miss in the GLT for
a particular path implies that the corresponding object does
not exist in the file system. The GLT is also stored on the
server side in the form of an email, where lazy updates are
adopted. Previous versions of the GLT are deleted whenever a
new update to the table is sent out. Note that only operations
that change the full path of a file or directory object, such as
rename or move, trigger a corresponding change in the GLT.
To ensure system recovery after failures, metadata emails that
reflect changes to the path of a file or directory are marked
as “GLT-DIRTY” using email flags. These flags are deleted
following a successful synchronization of the GLT with the
email servers. When EMFS starts up, the system searches the
email servers for emails with these “GLT-DIRTY” flags set.
Upon finding such emails, the system knows that a possible
failure has occurred and its GLT is inconsistent. EMFS updates
the table accordingly by scanning the “GLT-DIRTY” emails to
restore consistency. The setting and deletion of email flags are
cheap server-side operations: they do not require the download
of email messages to the local system. Our results show that
the use of the GLT helps in improving the lookup performance
of the system.

File data: File data organization in EMFS is rather simple and
straightforward. Any file is treated as a byte stream and divided
into blocks of size blocksize, a tunable parameter. We discuss
in more details about setting this parameter in Section IV-C.
Each block of the file is sent in a separate email. As mentioned
earlier, there is a block metadata entry for each block of a
file in a metadata email. The block id, version and file id
are all required, in order to uniquely identify a block of a
file. These three pieces of information together, known as a
block identifier, are always unique globally in the file system,
and need to be looked up in the parent directory’s metadata
email before a file block can be accessed. For fast and efficient
retrieval of the blocks themselves, the subject line of each file
block email contains its identifier.

B. Metadata and Data Access

Client cache management: The EMFS client maintains a
local disk cache to store file data. Any time a file is written to
the server (whenever an fsync() or flush() is invoked),
data is first written to the disk cache and then sent out to
the email servers. On retrieval, a block is cached for future
requests. EMFS assumes there is always enough space on
local disk to cache required files, which appears reasonable
considering personal file access workload characteristics [13].

Note that file data in the disk cache will not be deleted even
when the EMFS root is unmounted: updated metadata, plus the
version numbers, will indicate whether file blocks are stale due
to the user’s access from another machine. This way, data reads
can be greatly expedited on subsequent mounts. Additionally,
whenever a file is opened, the full file is read into a memory
buffer. Writes are buffered in memory until flush() or
fsync() is invoked, when data will be synchronously flushed
to disk and the email servers. This memory buffer is cleared
when the file is closed.

All metadata pertaining to a file or directory are cached in
memory upon first access. This in-memory metadata cache is
deleted on system unmount. To ensure consistency considering
users’ access from different computers, the metadata cache is
flushed periodically, with a frequency configurable by the user.
In our experiments, we used a frequency of once every 12
hours. Caching is an optional parameter of EMFS and can be
turned off if needed.

Metadata update: Metadata update is immediately and
synchronously committed to the server, with a design to reduce
the number of such update emails. For example, for mkdir, a
new directory metadata entry is added to the metadata email of
the current directory, and the version number of the metadata
email is increased by 1. This email is then immediately
committed to the server. Since the new directory does not have
any files or subdirectories, the creation of its own metadata
email is delayed until a file or directory is created under it. A
similar strategy is followed for newly created files as their size
is 0. rmdir is another example. To delete a directory, we mark
the target directory’s as “deleted” in the metadata email of its
parent directory, and this email is committed to the server. The
actual cleanup of its files and subdirectories, and the removal
of the target entry from the metadata can be performed lazily
as a part of garbage collection, to be discussed in Section III-D.
Doing so has another potential advantage, in that it may be
useful to restore accidentally deleted files and directories. This
feature is not currently implemented however.

Data access operations: Above we discussed the semantics
of directory and file creation. Here we briefly describe other
common file access operations. Opening a file involves validat-
ing its existence against the parent directory metadata email.
If successful and file data has not been cached, EMFS fetches
file data in the background, which facilitates subsequent reads.

As mentioned earlier, with write() calls, updates are
stored locally until flush() or fsync() is invoked. These
operations cause the concerned metadata email and file block
emails to be sent out. At the end of the write operation, EMFS
sends one more metadata email asynchronously to confirm that
the file transfer takes place correctly, to ensure consistency.
On file release, the file is checked to see if new data has been
written to it. If so, the file is flushed to the email server. If no
update has been made, the file is simply closed and deleted
from the in-memory cache.

Finally, when the FUSE release() interface is invoked,
flush() or fsync() will be called if the file is found dirty.
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C. Consistency and Failure Recovery

EMFS assumes that data loss cannot occur once any data
or metadata email has been transferred successfully to the
email server. Except when the client system crashes, EMFS
expects to receive acknowledgment from the email server
confirming successful transmissions. In the absence of such
a confirmation, EMFS assumes that the email has not been
received by the server and will resend updates. EMFS tries to
resend updates three times (a configurable parameter) before
notifying the user of failure. EMFS also uses noop or heartbeat
operations to check server status and keep connections to the
server alive.

Considering the email system’s append-only nature, EMFS
adopts a mechanism similar to that used in LFS [11] to ensure
the atomicity of updates. Whenever a file needs to be written
to the server, one metadata email and as many data emails
as needed, are sent out to the email server at the same time.
This metadata email has a ”status” field set for the file that is
being transferred, which indicates that the file is dirty. Once
the system receives confirmation that the data blocks have been
transferred successfully, it sends out another metadata email
with the status field cleared. Such a pair of metadata emails
help EMFS check the consistency of files and roll back if
necessary.

By default, EMFS makes all transfers to the email servers
synchronous and atomic, blocking users till the confirmation
has been received from the servers. However, the system can
be configured to a “lazy” mode, where all updates take place
in the background. With the single user assumption of the
current EMFS implementation, the performance gain of using
this weaker mode may outweigh the risk of losing updates.

D. Garbage Collection

When a full versioning system is not needed, garbage
collection has to be performed to reclaim storage space. EMFS
does this lazily by regularly scanning the whole file system,
checking all versions of metadata, and delete redundant emails
from the servers. Again the garbage collection aspect is similar
to log-structured file system. However, with email storage on
the web-based services, we do not need to worry about the disk
space fragmentation problem, which simplifies the garbage
collection design.

IV. EMAIL-BASED FILE SYSTEM DESIGN

A. Email Protocol Selection

The most common protocols in use today for transfer and
retrieval of emails are the Simple Mail Transfer Protocol
(SMTP), the Internet Message Access Protocol (IMAP), and
the Post Office Protocol (POP). SMTP can be used only for
transferring emails to the server, while IMAP and POP are
primarily used for retrieving emails.

In selecting email protocols, we have found that the key
constraint comes from the usage control imposed by email
service providers. While message size is not a problem,
popular services all have rather strict policies regarding the
number of messages an account can send in a certain amount
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Fig. 3. Email sending and appending performance

of time through SMTP, for purposes such as spam control. We
found such limits quite easy to reach even with a single-user,
personal file access workload and with EMFS’s scheme to
use per-directory metadata emails. IMAP, on the other hand,
allows users to “append” a message to their own mailbox,
and is not limited by traffic restrictions. Performance wise,
Figure 3 shows the latency of sending a file via the two
protocols, using mail body and attachment respectively. IMAP
is faster than SMTP in almost all cases, by 5.5% on average
and up to 42.64%.

For retrieving emails, IMAP is also a much more powerful
protocol compared to POP, providing complex remote access
to mailboxes, such as multiple client connections to the same
mailbox, flexible message retrieval, and access to individual
parts of a message.

Therefore, EMFS employs IMAP for both sending and
retrieving messages. This does have one drawback: messages
sent using SMTP can be automatically forwarded to other
accounts, which is an easy way for data replication. (In
fact, when sending from the user’s one account to another,
replication is achieved by having a copy in the sender’s sent-
box and the receiver’s inbox). With IMAP, replication has to
be explicitly performed by uploading redundant messages to
different accounts.

B. Data Placement Within Emails

Data can be stored in multiple places in an email - the
headers, the subject line, the email body, and as attachments.
The first three locations are ideal for storing metadata because
we can then use IMAP to search these fields on the server,
without download the emails. In EMFS, metadata is stored in
the body section, while the unique identifiers are stored in the
subject line.

 0

 20

 40

 60

 80

 100

 64  256  1024  4096

L
at

en
cy

 (
s)

Message size (KB)

SEND-A
SEND-B

RECEIVE-A
RECEIVE-B

(a) Gmail

 0

 20

 40

 60

 80

 100

 64  256  1024  4096

L
at

en
cy

 (
s)

Message size (KB)

SEND-A
SEND-B

RECEIVE-A
RECEIVE-B

(b) Gawab

Fig. 4. Single email sending/retrieving performance

252



For file data blocks, the only possible placement options
are bodies or attachments. Today’s web-based email service
providers have rather generous message size limits (e.g.,
10MB for Hotmail, 25 MB for Gmail, and 50MB for Gawab),
certainly large enough for file blocks. To choose between the
two, we conducted experiments to measure the latency of
sending and retrieving a single email, with varied message
payload sizes as email body or attachment (Figure 4). The
payload contained binary data mixed with ascii text. For
sending mails (appending via IMAP), the performance is
similar regardless of whether the payload is placed in the body
or the attachment. However, the placement of the payload
in the attachment slightly outperforms the placement in the
body with Gmail. For retrieving mails, when the payload size
grows beyond 2MB, latency of using mail body dramatically
increases. We found that the increase is mainly due to the
time taken to transform the downloaded string into an email
message format. As attachment in general outperforms body,
EMFS stores file blocks as email attachments.

C. Block Size and File Striping

Each email account used in EMFS is viewed as a virtual
disk and RAID [14] systems can be built on top of a group
of such email disks. In our prototype implementation, we
experimented with simple RAID composition, with striping
and mirroring. n email accounts are organized into an array,
with each account identified by a ”RAID Index” from 0 to
n−1. Data blocks are striped across email accounts to improve
the aggregate throughput. Metadata emails are usually small,
so they are not striped, which also simplifies email retrieval.

Instead of having a fixed array of email disks and striping
data in a round-robin manner, EMFS takes on a more flexible
approach at the cost of additional metadata. Blocks are stored
on randomly chosen disks, provided the disk has enough free
space. The RAIDIndex parameter in every <block> metadata
entry carries the index of its destination disk. As metadata size
is not a major concern, saving such complete mapping from
file blocks to email disks allows for easy capacity expansion
when new email accounts are added to the system.
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The striping setting is intertwined with block size selection,
which greatly influences EMFS’s performance since it decides
how many emails should be sent or retrieved for a file. To
examine the trade off in using different file block sizes, we first
conducted a group of tests to measure a 4MB file’s read/write
latency, where emails, each with an attachment (block) of size

ranging from 128KB to 4MB, are sent or retrieved from a
single email account (Figure 5). The results show that the file
access latency steadily decreases when we increase the file
block (attachment) size, for both Gmail and Gaweb mail.
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Using very large file block sizes, however, could risk losing
the transfer parallelism brought by striping, when data to be
read/written cannot be split into enough number of blocks.
Figure 6 and Figure 7 show the effect of striping with different
blocksizes on EMFS’s performance, with a small (32KB) and
a large (32MB) file respectively. Clearly, striping provides a
significant performance improvement. However, for the small
file, the benefit of using large block sizes seems to outweigh
the loss in parallelism. For the larger file, as the stripe width
grows, file read/write performance increases in general, while
the performance sensitivity to block size decreases, due to the
saturation of network bandwidth. Increasing the stripe width
beyond 8 or the block size beyond 1MB does not help the
performance. Block sizes smaller than 256KB, on the other
hand, degrades performance in almost all cases. Based on these
results, EMFS uses 512KB as its default block size and 8 as
the default stripe width. Note that messages smaller than the
block size are not padded in transferring or processing.

D. Data Replication

As mentioned earlier, EMFS assumes that data received
by the email servers will not be lost permanently. On the
other hand, it has to prepare for the unusual occasions of
service interrupt. As it is highly unlikely that multiple service
providers experience down time concurrently, EMFS employs
replication through IMAP to mirror data across multiple email
accounts from different providers. Considering the rather low
failure rates of major web-based email services [15], lazy
replication is chosen for apparent performance advantages. In
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EMFS, each virtual disk is associated with a replication group,
which consists of two or more disks mirroring the same data.
All disks in a replication group are assigned the same RAID
index. Updates will be written to one of the email disks within
the group synchronously, and to the others by a client-side
replication daemon lazily, as IMAP is not able to directly send
messages from one account to another. Email disks (accounts)
can be added or removed from a group.

With multiple email accounts carrying mirrored data, we
have a choice in selecting which account to use in read/write
operations. In EMFS, we examine two replication strategies:

• Read-one and Write-one: all reads and writes from EMFS
go to the same email account, which acts as a primary
email account. The other accounts are not used in file
accesses till the primary account fails, in which case
another account will be selected to become the primary.

• Read-fast and Write-fast: reads and writes go to different
accounts based on their uploading and downloading per-
formance. This optimization is based on our observation
that some email services provide better performance for
reads and some for writes. Hence, EMFS writes to the
email servers with higher write speeds, and reads from
those with higher read speeds. Replication occur lazily
to all accounts, which is not a problem for reads due to
local caching.

The replication daemon is also in charge of data recovery
when a failed server (account) is back into service. It maintains
a pending replication job list, which can be used for both lazy
replication and recovery. With this list, not only can a failed
account be restored, another account can also be updated into
the current state if the primary account (the account EMFS
reads from within a replication group) suddenly becomes
unavailable.

V. PERFORMANCE EVALUATION

A. Experiment Setup and Workloads

We use three benchmarks to evaluate different aspects of
our system, and compare it with three existing distributed file
systems, JungleDisk [1], NFS and AFS1. Experiments were
run on an Intel duo-core desktop (2.66 Ghz) with 3 GB of
RAM running Ubuntu 8.10. The machine was connected to the
Internet using a wired connection with a download speed of 6.3
Mbps and an upload speed of about 4.8 Mbps, measured using
online internet speed testing sites. Both NFS and AFS servers
were configured on dedicated machines inside the campus
network, similar in configuration to our test machine. Jungle
Disk, a commercial service that stores data on the Amazon S3
servers (and charges for both data storage and transfer), was
configured such that background or asynchronous transfers
were disabled.

We evaluated EMFS with accounts from Gmail and Gawab
Mail. We also performed experiment with a university webmail

1We had planned to compare EMFS with GmailFS IMAP [3], which
is probably the closest to our system. However GmailFS IMAP is unstable
and often crashed with the benchmarks used. So the comparison cannot be
finished.

system. The results are quite similar to those with Gmail, and
were omitted. In our tests, 8 accounts from both Gmail and
Gawab are used, allowing a stripe width of 8. Considering
the mirroring overhead across two services, the smaller quota
from Gmail will impose a space limit. Therefore, this setting
aggregates around 7.5GB×8, i.e., 60GB of free storage space.

In our evaluation we used two widely used file system
benchmarks (Postmark Version 1.51 [16] and IOZone Version
3.287 [17]), as well as one synthetic personal file access
benchmark. Details of these benchmarks will be described
later. Since EMFS is currently designed for personal usage,
multi-threaded benchmarks were not considered. However,
FUSE itself is inherently multi-threaded and initializes a
pool of 10 threads to serve concurrent file system requests.
All experiments were run for at least three times and the
average value was reported. Error bars have been shown for
experiments whose performance variance is over 6%.

B. Performance Results

Postmark: Postmark measures performance for network
based systems by simulating access on short lived small files.
It creates a large number of files of various sizes and measures
the time to finish a series of transactions (read, append,
creation and deletion), so it tests both data and metadata
accesses. Before the benchmark finishes, any remaining files
are deleted completely. A single transaction involves two
operations: read/append and create/delete. The bias parameter
of Postmark can be configured to adjust the ratio among these
operations. We report the time that each system takes to finish
all the transactions.
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Figures 8 shows the results in campus network. The tests
were configured to use 200 files, 200 transactions, with file
sizes ranging between 4 KB and 16 MB. We generated four
workloads (equal bias, read heavy, append heavy, and create
heavy) by varying the operation bias. For EMFS, we tested two
strategies, Read-One-Write-One (EMFS-One) and Read-Fast-
Write-Fast (EMFS-Fast), as described in Section IV-D. EMFS-
One reads from and writes to Gmail accounts considering the
service’s popularity. EMFS-Fast reads from Gmail and writes
to Gawab accounts. With both strategies, EMFS does lazy
replication between Gmail and Gawab accounts.
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Not surprisingly, AFS and NFS perform better than EMFS
and Jungle Disk – both are highly optimized systems running
in the kernel, utilizing and optimizing raw connections for data
transfer, and with smart servers. Further, both NFS and AFS
servers were set up inside the campus network, meaning that
data transfers took place over the local network rather than
the Internet.

EMFS offers comparable performance to Jungle disk, espe-
cially for balanced or read-heavy workloads, as both systems
get to utilize their own local caches as well as the OS
page and buffer caches. For append-heavy and create-heavy
workloads (where 2743 MB and 3134 MB of data respectively
is transferred over the network), EMFS is not as efficient
as Jungle disk. The reason is that email protocols are not
designed for fast continuous transfer of large amounts of data.
Though all systems use strict synchronous writes, due to its
“dumb” server, EMFS has to send a second metadata email
for every write to ensure consistency. Although it is sent in
the background to minimize the performance penalty while
providing consistency, it becomes expensive when a lot of
files are written consecutively. Jungle disk, on the other hand,
has dedicated servers.

We also observe that EMFS-Fast does offer better perfor-
mance than EMFS-One, especially for update-heavy work-
loads, due to its selective use of accounts for reads and writes.

To test EMFS’s scalability, we also performed a 500-file,
200-transaction experiments, which last around 5 hours and
upload around 5GB of data. The results obtained are very
similar to those from the smaller tests.

Finally, personal users are more likely to utilize asymmetric
networks, such as home internet connections, where uploads
are much slower than downloads. We conducted the same
experiments in home network settings with ADSL connection
at different times during a day. The performance trends are
almost identical to those shown in Figure 8. Due to space
limit, we only report the results of the rest of our performance
evaluation with the campus network setting.

IOZone: IOZone is a popular benchmark for file system per-
formance evaluation. Unlike Postmark, IOZone mainly focuses
on file data access. It can be configured to test different file
access patterns. This can be useful in evaluating EMFS’s per-
formance as a backup service. In our experiments, we created
a file of size 16 MB and compare EMFS with other systems
with two different workloads: sequential read/sequential write,
and random read/random write, using varying request sizes.
Furthermore, IOZone was configured so that every write was
synchronous (using the O SYNC flag) and the time taken by
file close was also included in throughput calculations.

Figures 9 shows the read performance of a 16 MB file with
read request sizes ranging from 128 KB to 4 MB. The test was
conducted with a cold cache for all systems. AFS, Jungle Disk,
and EMFS all download the file upon file open. However, from
our examination of the IOZone source code, the benchmark
does not include the file open time in throughput calculations.
Therefore, AFS and Jungle Disk both serve read requests
directly from their disk cache, leading to a transfer rate of
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Fig. 9. IOZone read performance. Error bars show 95% confidence
levels.
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Fig. 10. IOZone write performance

between 25 to 50 MB/s. The transfer rate for Jungle Disk
is lower than that of AFS, mainly due to that Jungle Disk
invokes a setattr() operation on file close to update the
last accessed time. This is a network operation and restricts
the Jungle Disk throughput to a maximum of 34 MB/s. The
read transfer rate for NFS is only around 1 MB/s as NFS
retrieves the entire file from the server before servicing the
read requests. This is because with NFS3, disk caching is
advisory and an external cache manager (such as CacheFS)
is needed to enable caching, which was not configured on our
test client. EMFS reports very high transfer rates (between 390
and 600 MB/s) for both sequential and random reads. This is
due to that in addition to disk caching, EMFS caches the entire
file in memory on file open, which is acceptable for personal
workloads, where file sizes are relatively small.

Interestingly, Jungle Disk reports very low throughput
(about 550-600 KB/s) for random reads. This is because
IOZone opens up the test file in r+ mode for random reads.
On file close, even though no changes have been made, Jungle
Disk writes the whole file back to the server since it has
been opened in r+ mode. This is extremely inefficient and
significantly lowers the throughput for random reads.

Figures 10 shows the write performance of a 16 MB file
in request sizes ranging from 128 KB to 4 MB. All systems
display the same trend for all file writes, regardless of the write
access pattern (sequential or random). This is because for all of
them, any changes made to the file through write() calls are
cached locally until a flush() is invoked. The changed file
is then transferred to the server and hence the write throughput
is dominated by the time taken to transfer the data across the
network. In order to accurately reflect the time taken for a
system to transfer a file to its server, the IOZone test was
configured such that the time to close a file was included in
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throughput calculation.
We see that EMFS is slightly better than Jungle Disk in

terms of write throughput. This is because Jungle Disk sends
out additional metadata updates, such as the last accessed time,
separately on file close as mentioned before. This introduces
an extra delay of about 0.5 to 1 second, resulting in the slightly
lower throughput. NFS and AFS are faster due to their high
file transfer performance and low overhead.

Editing Workload: This is a synthetic benchmark that
simulates a document editing task. On each of the systems
evaluated, we created a filesystem image, containing about
100 files (with sizes ranging between 8KB and 4MB) within
14 directories (with a maximum depth of 3). First, on a cold
cache, lookup (ls -l) operations are executed, starting with
directories at the deepest level (to assess EMFS’s hierarchical
lookup overhead), followed by operations performing cd to
and ls -l in other directories. A total of 38 metadata
operations are executed. After that, an Open Office document
of size is opened and edited using a OpenOffice benchmark
(part of the Linux Battery Life Toolkit [18]. It plays a
typical document editing trace, containing operations such as
inputting, formatting and editing text, search and replace, and
finally saving the edited document. The document’s size grows
from 8.7KB to 26KB after playing this trace.

Figure 11 shows the results, categorized and normalized
against the Jungle Disk measurement. Lookup operations for
AFS is lightning fast, as its client downloads enough metadata
to perform a direct local translation between the full pathname
to file ID. In NFS, lookup operations for a single path may
involve several lookup RPC calls to the server. We are not
clear about Jungle Disk’s lookup behavior as it is proprietary.
With EMFS, lookup operations occur in a hierarchical manner
proceeding from the top most directory in the path to the
target directory. Hence, the lookup overhead is considerably
higher. In addition, the retrieval of even just 1 KB of data
from email servers via IMAP takes 0.25 seconds due to
protocol overhead. Furthermore, the latency of the AFS and
NFS servers determined via ping packets of size 1K is only
2.7 milliseconds, as opposed to 21 milliseconds for gmail.com
and 87 milliseconds for gawab.com. The hierarchical lookup
overhead of EMFS can be partially alleviated by more ag-
gressive metadata prefetching. The “EMFS-Prefetch” method
prefetches metadata for one more level of directories under
the current directory. Results in Figure 11 shows that this
help reducing the total lookup time by 17.4%. The lookup-
table design of EMFS (“EMFS-GLT”) also helps in improving
performance. It does not prefetch metadata, therefore saving
both client- and server-side bandwidth, yet performing roughly
as well as the “EMFS-Prefetch” method. Given the short total
execution time (EMFS spends 0.72 seconds on the 38 metadata
operations), we do not expect that users performing everyday
personal file processing tasks notice a slowdown when using
EMFS.

The bulk of the time taken for execution of the entire work-
load is taken up by the “editing” part of the workload, which
costs around 11 minutes (650 seconds) in this benchmark. The

“Edit” bar in Figure 11, however, shows the total response time
to keystrokes and other editing operations. Here all systems
perform nearly the same, as the editing operations are executed
locally.

Only file open, and file save involve network operations.
For save, EMFS-Fast does bring an improvement of 31%. Its
performance is quite close to Jungle Disk, but both are far
behind NFS and AFS, mainly due to the inefficiency of using
un-optimized protocols to transfer small files to/from Internet-
based servers. While the relative performance differences
between systems is large, we consider the open and save
overhead of EMFS or Jungle Disk rather safe from causing
user frustration, as it tends to be hidden by much higher
application overhead. For example, in this benchmark, the
Open Office takes around 50 and 30 seconds to startup and
exit, respectively.
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VI. RELATED WORK

We are not the first to study email-based file systems.
GmailFS [3] implements a file system using Gmail services,
although it seems to be under development and no stable
version is available for performance comparison. YaFS [4]
is an extensible distributed file system using heterogeneous
online storage services (including email) as back-ends. In
addition, free email accounts have been explored for data
backup [5], where the authors also discussed the possibility
of mirroring data across multiple email accounts. However, to
our best knowledge, our work is the first that systematically ex-
amines email-based file system design issues, and thoroughly
evaluates the effectiveness of features such as multi-account
space aggregation, file striping, and data replication.

Several other existing client-server systems are similar to
EMFS in the sense that they only require client-side instal-
lation, which accesses servers via standard network protocols
such as FTP and SFTP. For example, LftpFS [19] is a read-
only network file system with caching for smart mirror sites.
ExpanDrive [20] is a network file system that maps a local
volume to an SFTP server. The major difference is that our
work aims to build a general-purpose file system capable of
partial file accesses. Also, EMFS focuses on email-specific
design issues and enables users to take advantage of widely
available and increasingly powerful web-based email services.
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Distributed file system has been an active research area
for many years. Besides widely deployed systems such as
NFS [21] and AFS [22], other distributed file systems provide
many building blocks and techniques that EMFS can leverage.
Examples include consistency and replication mechanisms
(Coda [23], Dynamo [24], and TierStore [25]), communica-
tion bandwidth preserving by exploiting cross-file similarities
(LBFS [26]), large data blocks and aggressive replication
(GFS [27]), and hash-based data distribution for scalable
metadata management (Ceph [28]). EMFS, in turn, comple-
ments existing studies on distributed file/storage systems by
exploring the feasibility of supporting file operations on top
of free, pervasive, yet rather opaque email services.

Certain aspects of EMFS design are similar to existing
file systems, such as striping (universal in parallel file sys-
tems [29], [30], [31], as well as distributed file systems [27]).
Similarly, EMFS leverages metadata consistency and failure
recovery methods from log-structured file systems [11]. How-
ever, our exploration and discussion focus on examining the
application and impact of such mature techniques in email
environments, especially in exploiting their novel uses in
addressing unique problems such as the usage limit enforced
by mail service providers.

VII. CONCLUSION

We presented EMFS, a personal cloud storage solution on
top of multiple web-based free email accounts. By viewing
email accounts as virtual disks and applying techniques such
as striping and replication, EMFS is able to provide cost-
effective, efficient, and highly available storage, by leveraging
the cloud infrastructure of leading web-based email service
providers. Though email protocols are not designed for file
transfer, we have found that EMFS achieves a significant
fraction of NFS/AFS performance (with the latter running on
dedicated servers within local networks) and approximately
matches or outperforms Jungle Disk, a non-free commercial
cloud storage service.
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